Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Feat (brevitas_examples/llm): remove dependencies from optimum-amd #1094

Open
wants to merge 4 commits into
base: dev
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 0 additions & 2 deletions noxfile.py
Original file line number Diff line number Diff line change
Expand Up @@ -142,8 +142,6 @@ def tests_brevitas_examples_llm(session, pytorch, jit_status):
install_pytorch(pytorch, session)
install_torchvision(pytorch, session) # Optimum seems to require torchvision
session.install('-e', '.[test, llm, export]')
session.install(
'optimum-amd[brevitas] @ git+https://github.com/huggingface/optimum-amd.git@main')
session.run('pytest', '-n', 'logical', '-k', 'llm', 'tests/brevitas_examples/test_llm.py')


Expand Down
7 changes: 6 additions & 1 deletion requirements/requirements-llm.txt
Original file line number Diff line number Diff line change
@@ -1,3 +1,8 @@
# optimum-amd[brevitas] @ git+https://github.com/huggingface/optimum-amd.git@main
accelerate
datasets
onnx
onnx-tools
onnxruntime
Copy link
Collaborator

@nickfraser nickfraser Nov 20, 2024

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

onnx-tools not required?

optimum
tqdm
transformers[sentencepiece]==4.45.2
121 changes: 70 additions & 51 deletions src/brevitas_examples/llm/llm_quant/data.py
Original file line number Diff line number Diff line change
@@ -1,19 +1,27 @@
"""
Adapted from https://github.com/IST-DASLab/gptq, released under the following LICENSE:
Adapted from https://github.com/huggingface/optimum-amd, released under the following LICENSE:

Copyright 2023 IST-DASLab
MIT License

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Copyright (c) 2023 Hugging Face

http://www.apache.org/licenses/LICENSE-2.0
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
"""

import random
Expand All @@ -24,50 +32,61 @@
from tqdm import tqdm


def get_c4(nsamples, seed, seqlen, tokenizer, split='train', nvalsamples=0):
if split == 'train':
def get_c4(
tokenizer: Any,
seqlen: int,
nsamples: int,
split: str = "train",
fuse_sequences: bool = True,
seed: int = 42):
random.seed(seed)

if split == "train":
data = load_dataset(
'allenai/c4',
'allenai--c4',
data_files={'train': 'en/c4-train.00000-of-01024.json.gz'},
split='train',
use_auth_token=False)

random.seed(seed)
dataloader = []
for _ in range(nsamples):
while True:
i = random.randint(0, len(data) - 1)
trainenc = tokenizer(data[i]['text'], return_tensors='pt')
if trainenc.input_ids.shape[1] >= seqlen:
break
i = random.randint(0, trainenc.input_ids.shape[1] - seqlen - 1)
j = i + seqlen
inp = trainenc.input_ids[:, i:j]
dataloader.append(inp)
return dataloader
elif split == 'validation':
"allenai/c4", split="train", data_files={"train": "en/c4-train.00000-of-01024.json.gz"})
elif split == "validation":
data = load_dataset(
'allenai/c4',
'allenai--c4',
data_files={'validation': 'en/c4-validation.00000-of-00008.json.gz'},
split='validation',
use_auth_token=False)

random.seed(0) # hardcoded for validation reproducibility
valenc = []
for _ in range(nvalsamples):
while True:
i = random.randint(0, len(data) - 1)
tmp = tokenizer(data[i]['text'], return_tensors='pt')
if tmp.input_ids.shape[1] >= seqlen:
break
i = random.randint(0, tmp.input_ids.shape[1] - seqlen - 1)
"allenai/c4",
split="validation",
data_files={"validation": "en/c4-validation.00000-of-00008.json.gz"},
)

if fuse_sequences:
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I think this part as well.

data = data.shuffle(seed=seed)[:10000] # c4 is too big.
full_text = "\n\n".join(data["text"])
tokenized_data = tokenizer(full_text, return_tensors="pt")

dataset = []
for _ in range(nsamples):
i = random.randint(0, tokenized_data.input_ids.shape[1] - seqlen - 1)
j = i + seqlen
valenc.append(tmp.input_ids[:, i:j])
inp = tokenized_data.input_ids[:, i:j]
attention_mask = torch.ones((1, seqlen), dtype=torch.int64)
dataset.append({"input_ids": inp, "attention_mask": attention_mask})
else:
dataset = []
with tqdm(total=nsamples) as pbar:
while len(dataset) < nsamples:
data_index = random.randint(0, len(data) - 1)

enc = tokenizer(data[data_index]["text"], return_tensors="pt")

if enc["input_ids"].shape[1] < seqlen:
continue

start_idx = random.randint(0, enc["input_ids"].shape[1] - seqlen)
end_idx = start_idx + seqlen - 1
attention_mask = torch.ones((1, seqlen), dtype=torch.int64)
input_ids = enc["input_ids"][:, start_idx:end_idx + 1]

# Add BOS token.
if tokenizer.eos_token_id is not None:
input_ids[:, 0] = tokenizer.eos_token_id

dataset.append({"input_ids": input_ids, "attention_mask": attention_mask})
pbar.update(1)

valenc = torch.hstack(valenc)
return valenc
return dataset


def get_wikitext2(
Expand Down
41 changes: 38 additions & 3 deletions src/brevitas_examples/llm/llm_quant/data_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,18 +25,53 @@
"""

import random
from typing import Any, Optional, Union
from typing import Any, Iterable, List, Optional, Union

import numpy as np
from optimum.amd.brevitas.data_utils import DatasetToDevice
from optimum.amd.brevitas.data_utils import get_c4
from optimum.utils.normalized_config import NormalizedConfigManager
import torch
from transformers import AutoConfig

from .data import get_c4
from .data import get_wikitext2


class DatasetToDevice(torch.utils.data.Dataset):
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Lic.


def __init__(self, data: List, device: Optional[Union[str, torch.device]]):
super().__init__()
self.data = data
self.device = device

def __getitem__(self, idx):
if self.device is not None:
return {
name: recursive_to_device(val, self.device) for name, val in self.data[idx].items()}
else:
return self.data[idx]

def __len__(self):
return len(self.data)


@torch.no_grad()
def recursive_to_device(tensor_or_iterable: Union[Iterable, torch.Tensor], device) -> None:
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Lic.

if isinstance(tensor_or_iterable, torch.Tensor):
return tensor_or_iterable.to(device)
elif isinstance(tensor_or_iterable,
tuple): # Special handling of tuples, since they are immutable
tmp_list = []
for i in tensor_or_iterable:
tmp_list.append(recursive_to_device(i, device))
return tuple(tmp_list)
elif isinstance(tensor_or_iterable, Iterable):
for i in tensor_or_iterable:
tensor_or_iterable[i] = recursive_to_device(i, device)
return tensor_or_iterable
else:
raise ValueError(f"Cannot move {type(tensor_or_iterable)} to {device}")


def get_dataset_for_model(
model_name_or_path: str,
dataset_name: str,
Expand Down
110 changes: 84 additions & 26 deletions src/brevitas_examples/llm/llm_quant/eval.py
Original file line number Diff line number Diff line change
@@ -1,25 +1,39 @@
"""
Adapted from https://github.com/IST-DASLab/gptq, released under the following LICENSE:
Adapted from https://github.com/huggingface/optimum-amd, released under the following LICENSE:

Copyright 2023 IST-DASLab
MIT License

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Copyright (c) 2023 Hugging Face

http://www.apache.org/licenses/LICENSE-2.0
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
"""
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Old licence still necessary? Seems the entire contents of this file have changed...


import random
from typing import Any, Dict, List

import numpy as np
import torch
from torch import nn
from tqdm import tqdm

from brevitas_examples.llm.llm_quant.data_utils import recursive_to_device


def create_validation_dataloader(data, seqlen, device):
nsamples = data['input_ids'].numel() // seqlen
Expand All @@ -32,19 +46,63 @@ def create_validation_dataloader(data, seqlen, device):


@torch.no_grad()
def model_eval(model, valenc, seqlen):
nsamples = len(valenc)
with torch.no_grad():
nlls = []
for inps in valenc:
lm_logits = model(**inps)['logits']
shift_logits = lm_logits[:, :-1, :].contiguous()
dev = shift_logits.device
shift_labels = inps['input_ids'][:, 1:].to(dev)
shift_logits = shift_logits.to(dev)
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
neg_log_likelihood = loss.float() * seqlen
nlls.append(neg_log_likelihood)
ppl = torch.exp(torch.stack(nlls).sum() / (nsamples * seqlen))
def compute_perplexity(
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Lic.

model: torch.nn.Module,
data: List[Dict],
context_length: int,
tokenizer: Any,
seed: int = 0):
random.seed(seed)
np.random.seed(seed)
torch.random.manual_seed(seed)

model = model.eval()

cross_entropy_loss = nn.CrossEntropyLoss()

nlls = []
for sample in tqdm(data, desc="Computing perplexity..."):
sample_length = sample["input_ids"].shape[1]
for start_index in range(0, sample_length, context_length * 2):
end_index = min(start_index + sample_length, sample_length - 1)

subsample = {
"input_ids": sample["input_ids"][:, start_index:end_index + 1],
"attention_mask": sample["attention_mask"][:, start_index:end_index + 1],}

# In case we are using torch.fx, we can not have optional inputs, and we have traced the model with past_key_values inputs, thus we need them here as well.
if "past_key_values" in sample and isinstance(model, torch.fx.GraphModule):
subsample["past_key_values"] = sample["past_key_values"]

# Add BOS token.
if tokenizer.bos_token_id is not None:
subsample["input_ids"][:, 0] = tokenizer.bos_token_id

use_accelerate = hasattr(model, "hf_device_map")
if not use_accelerate or (use_accelerate and not hasattr(model, "_hf_hook")):
device = next(model.parameters()).device
for name, val in subsample.items():
subsample[name] = recursive_to_device(val, device)
else:
# In accelerate by default `io_same_device=True`, and here we want the of the model output on device.
device = model._hf_hook.execution_device
for name, val in subsample.items():
subsample[name] = recursive_to_device(val, device)

lm_logits = model(**subsample)["logits"]

reference_labels = subsample["input_ids"][:, context_length:]

shift_logits = lm_logits[:, context_length - 1:-1]

# Fuse batch and sequence length dimensions.
reference_labels = reference_labels.view(reference_labels.shape[-1])
shift_logits = shift_logits.view(-1, shift_logits.shape[-1])

loss = cross_entropy_loss(shift_logits, reference_labels)

nlls.append(loss)

ppl = torch.exp(torch.stack(nlls).mean())

return ppl
2 changes: 1 addition & 1 deletion src/brevitas_examples/llm/main.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,6 @@
from warnings import warn

import numpy as np
from optimum.amd.brevitas.data_utils import compute_perplexity
from optimum.exporters.onnx import onnx_export_from_model
import torch
from transformers import AutoModelForCausalLM
Expand All @@ -30,6 +29,7 @@
from brevitas_examples.llm.llm_quant.data_utils import get_dataset_for_model
from brevitas_examples.llm.llm_quant.equalize import apply_act_equalization
from brevitas_examples.llm.llm_quant.equalize import apply_weight_equalization
from brevitas_examples.llm.llm_quant.eval import compute_perplexity
from brevitas_examples.llm.llm_quant.export import BlockQuantProxyLevelManager
from brevitas_examples.llm.llm_quant.export import brevitas_proxy_export_mode
from brevitas_examples.llm.llm_quant.gpxq import apply_gpfq
Expand Down
Loading