Skip to content

Commit

Permalink
Merge branch 'release/v0.0.8'
Browse files Browse the repository at this point in the history
  • Loading branch information
mbcole committed Sep 26, 2016
2 parents 4b1ad3f + db2d58e commit 91b2740
Show file tree
Hide file tree
Showing 29 changed files with 1,869 additions and 1,704 deletions.
18 changes: 13 additions & 5 deletions DESCRIPTION
Original file line number Diff line number Diff line change
@@ -1,14 +1,14 @@
Package: scone
Version: 0.0.7
Version: 0.0.8-9000
Title: Single Cell Overview of Normalized Expression data
Description: scone is a package to compare and rank the performance of different normalization schemes in real single-cell RNA-seq datasets.
Description: SCONE is an R package for comparing and ranking the performance of different normalization schemes for single-cell RNA-seq and other high-throughput analyses.
Authors@R: c(person("Michael", "Cole", email = "mbeloc@gmail.com",
role = c("aut", "cre", "cph")),
person("Davide", "Risso", email = "risso.davide@gmail.com",
role = c("aut", "cph")))
Author: Michael Cole [aut, cre, cph], Davide Risso [aut, cph]
Maintainer: Michael Cole <mbeloc@gmail.com>
Date: 2016-07-22
Date: 2016-09-26
License: file LICENSE
Depends:
R (>= 3.3)
Expand All @@ -23,16 +23,24 @@ Imports:
edgeR,
fpc,
gplots,
grDevices,
hexbin,
limma,
MASS,
matrixStats,
mixtools,
grDevices,
RColorBrewer,
boot,
shiny,
miniUI,
rhdf5,
RUVSeq
RUVSeq,
DT,
NMF,
ggplot2,
plotly,
reshape2,
visNetwork
Suggests:
knitr,
rmarkdown,
Expand Down
58 changes: 58 additions & 0 deletions NAMESPACE
Original file line number Diff line number Diff line change
Expand Up @@ -21,12 +21,24 @@ export(lm_adjust)
export(make_design)
export(metric_sample_filter)
export(scone)
export(sconeReport)
export(scone_easybake)
export(score_matrix)
export(simple_FNR_params)
import(BiocParallel)
import(gplots)
import(plotly)
import(visNetwork)
importFrom(DESeq,estimateSizeFactorsForMatrix)
importFrom(DT,dataTableOutput)
importFrom(DT,dataTableProxy)
importFrom(DT,formatSignif)
importFrom(DT,renderDataTable)
importFrom(DT,selectRows)
importFrom(EDASeq,betweenLaneNormalization)
importFrom(MASS,glm.nb)
importFrom(NMF,aheatmap)
importFrom(RColorBrewer,brewer.pal)
importFrom(RUVSeq,RUVg)
importFrom(aroma.light,normalizeQuantileRank.matrix)
importFrom(boot,inv.logit)
Expand All @@ -36,14 +48,33 @@ importFrom(cluster,silhouette)
importFrom(diptest,dip.test)
importFrom(edgeR,calcNormFactors)
importFrom(fpc,pamk)
importFrom(ggplot2,aes)
importFrom(ggplot2,coord_cartesian)
importFrom(ggplot2,element_blank)
importFrom(ggplot2,geom_bar)
importFrom(ggplot2,geom_point)
importFrom(ggplot2,geom_violin)
importFrom(ggplot2,ggplot)
importFrom(ggplot2,guides)
importFrom(ggplot2,labs)
importFrom(ggplot2,scale_fill_manual)
importFrom(ggplot2,theme)
importFrom(ggplot2,ylim)
importFrom(grDevices,colorRampPalette)
importFrom(grDevices,dev.off)
importFrom(grDevices,pdf)
importFrom(graphics,abline)
importFrom(graphics,arrows)
importFrom(graphics,barplot)
importFrom(graphics,hist)
importFrom(graphics,legend)
importFrom(graphics,lines)
importFrom(graphics,par)
importFrom(graphics,plot)
importFrom(graphics,points)
importFrom(graphics,text)
importFrom(hexbin,hexbin)
importFrom(hexbin,plot)
importFrom(limma,lmFit)
importFrom(matrixStats,colIQRs)
importFrom(matrixStats,colMedians)
Expand All @@ -52,18 +83,42 @@ importFrom(miniUI,gadgetTitleBar)
importFrom(miniUI,miniContentPanel)
importFrom(miniUI,miniPage)
importFrom(mixtools,normalmixEM)
importFrom(reshape2,melt)
importFrom(rhdf5,h5createFile)
importFrom(rhdf5,h5ls)
importFrom(rhdf5,h5read)
importFrom(rhdf5,h5write)
importFrom(rhdf5,h5write.default)
importFrom(shiny,br)
importFrom(shiny,brushedPoints)
importFrom(shiny,column)
importFrom(shiny,downloadHandler)
importFrom(shiny,downloadLink)
importFrom(shiny,fluidPage)
importFrom(shiny,fluidRow)
importFrom(shiny,h5)
importFrom(shiny,h6)
importFrom(shiny,helpText)
importFrom(shiny,mainPanel)
importFrom(shiny,observeEvent)
importFrom(shiny,p)
importFrom(shiny,plotOutput)
importFrom(shiny,reactive)
importFrom(shiny,renderPlot)
importFrom(shiny,renderTable)
importFrom(shiny,renderText)
importFrom(shiny,runGadget)
importFrom(shiny,selectInput)
importFrom(shiny,shinyApp)
importFrom(shiny,sidebarLayout)
importFrom(shiny,sidebarPanel)
importFrom(shiny,sliderInput)
importFrom(shiny,stopApp)
importFrom(shiny,tabPanel)
importFrom(shiny,tableOutput)
importFrom(shiny,tabsetPanel)
importFrom(shiny,titlePanel)
importFrom(shiny,updateSelectInput)
importFrom(shiny,verbatimTextOutput)
importFrom(stats,approx)
importFrom(stats,as.formula)
Expand All @@ -86,3 +141,6 @@ importFrom(stats,quantile)
importFrom(stats,quasibinomial)
importFrom(stats,sd)
importFrom(utils,capture.output)
importFrom(utils,head)
importFrom(utils,sessionInfo)
importFrom(utils,write.table)
37 changes: 23 additions & 14 deletions R/data.R
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
#' Positive and negative control genes
#' Positive and Negative Control Genes
#'
#' Sets of positive and negative control genes, useful for input in
#' \code{\link{scone}}.
Expand All @@ -7,21 +7,34 @@
#' normalization or for evaluation and ranking of the normalization strategies.
#'
#' @details The datasets are in the form of \code{data.frame}, with at least one
#' column containing the gene symbols and optionally a second column
#' column containing the gene symbols and (optionally) a second column
#' containing additional information (such as cortical layer or cell cycle
#' phase).
#'
#' @details Note that the gene symbols follow the mouse conventions (i.e.,
#' capitalized) or the human conventions (i.e, all upper-case), based on the
#' original pubblication. One can use the \code{\link[base]{toupper}},
#' original publication. One can use the \code{\link[base]{toupper}},
#' \code{\link[base]{tolower}}, and \code{\link[tools]{toTitleCase}} functions
#' to convert the symbols.
#'
#' @details The genes in \code{cortical_markers} are from Figure 3 of Molyneaux
#' et al. (2007). The genes in \code{housekeeping} are from Eisenberg and
#' Levanon (2003) and in \code{housekeeping_revised} are from Eisenberg and
#' Levanon (2013). The genes in \code{cellcycle_genes} are adapted from
#' Kowalczyk et al. (2015).
#' to convert symbols.
#'
#' @details Mouse gene symbols in \code{cortical_markers} are transcribed from Figure 3 of Molyneaux
#' et al. (2007): "laminar-specific expression of 66 genes within the neocortex."
#'
#' @details Human gene symbols in \code{housekeeping} are derived from the list of "housekeeping" (HK) genes from
#' the cDNA microarray analysis of Eisenberg and Levanon (2003): "[HK genes] belong to the class of
#' genes that are EXPRESSED in all tissues." "... from 47 different human tissues and cell lines."
#'
#' @details Human gene symbols in \code{housekeeping_revised} are from Eisenberg and Levanon (2013): "This list
#' provided ... is based on analysis of next-generation sequencing (RNA-seq) data. At least one variant of these
#' genes is expressed in all tissues uniformly... The RefSeq transcript according to which we deemed the gene
#' 'housekeeping' is given." Housekeeping exons satisfy "(i) expression observed in all tissues; (ii) low
#' variance over tissues: standard-deviation [log2(RPKM)]<1; and (iii) no exceptional expression in any single
#' tissue; that is, no log-expression value differed from the averaged log2(RPKM) by two (fourfold) or more."
#' "We define a housekeeping gene as a gene for which at least one RefSeq transcript has more than half of
#' its exons meeting the previous criteria (thus being housekeeping exons)."
#'
#' @details Gene symbols in \code{cellcycle_genes} represent a set of genes marking G1/S and G2/M. No reference
#' provided.
#'
#' @references Molyneaux, B.J., Arlotta, P., Menezes, J.R. and Macklis, J.D..
#' Neuronal subtype specification in the cerebral cortex. Nature Reviews
Expand All @@ -30,10 +43,6 @@
#' Trends in Genetics, 2003, 19(7):362-5.
#' @references Eisenberg E, Levanon EY. Human housekeeping genes, revisited.
#' Trends in Genetics, 2013, 29(10):569-74.
#' @references Kowalczyk, M.S., Tirosh, I., Heckl, D., Rao, T.N., Dixit, A.,
#' Haas, B.J., Schneider, R.K., Wagers, A.J., Ebert, B.L. and Regev, A.
#' Single-cell RNA-seq reveals changes in cell cycle and differentiation
#' programs upon aging of hematopoietic stem cells. Genome research, 2015.
#'
#' @name control_genes
#'
Expand Down
5 changes: 4 additions & 1 deletion R/sample_filtering.R
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,7 @@
#'
#' @importFrom boot logit
#' @importFrom matrixStats rowMedians
#' @export
#'
simple_FNR_params = function(expr, pos_controls, fn_tresh = 0.01){

Expand Down Expand Up @@ -121,6 +122,8 @@ simple_FNR_params = function(expr, pos_controls, fn_tresh = 0.01){
#' fnr auc threshold.
#'@param plot logical. Should a plot be produced?
#'@param hist_breaks hist() breaks argument. Ignored if `plot=FALSE`.
#'@param ... Arguments to be passed to methods.
#'
#'
#'@return A list with the following elements: \itemize{ \item{filtered_nreads}{
#' Logical. Sample has too few reads.} \item{filtered_ralign}{ Logical. Sample
Expand All @@ -140,7 +143,7 @@ metric_sample_filter = function(expr, nreads = colSums(expr), ralign = NULL,
mixture = TRUE, dip_thresh = 0.05,
hard_nreads = 25000, hard_ralign = 15, hard_breadth = 0.2, hard_auc = 10,
suff_nreads = NULL, suff_ralign = NULL, suff_breadth = NULL, suff_auc = NULL,
plot = FALSE, hist_breaks = 10){
plot = FALSE, hist_breaks = 10, ...){

criterion_count = 0

Expand Down
Loading

0 comments on commit 91b2740

Please sign in to comment.