This project is based on VINS-FUSION. I've merged superpoint、lightglue and MixVPR into VINS-FUSION for loop closure.If it is helpful to you ,please consider starring this repository.
python==3.8.18
onnx==1.13.1
onnxruntime==1.16.3
torch==1.13.1+cu117
cuda == 11.7
TensorRT == 8.6.1.6
faiss == 1.7.2
opencv == 3.4.10
2070 SUPER
please refer to Vins-Fusion
- mixvpr
model = VPRModel(backbone_arch='resnet50',
layers_to_crop=[4],
agg_arch='MixVPR',
agg_config={'in_channels': 1024,
'in_h': 20,
'in_w': 20,
'out_channels': 256,
'mix_depth': 4,
'mlp_ratio': 1,
'out_rows': 2},
)
state_dict = torch.load('/home/sy/sy/Mix_ws/src/mixvpr/model/resnet50_MixVPR_512_channels(256)_rows(2).ckpt')
model.load_state_dict(state_dict)
model.eval()
model.cpu()
input = torch.randn(1, 3, 320, 320)
output_path = '/home/sy/sy/Mix_ws/src/mixvpr/mix_512.onnx'
torch.onnx.export(model, input, output_path,
verbose=False,
opset_version=13,
input_names=['img'],
output_names=['des'],
)
model_sim, flag = onnxsim.simplify(output_path)
if flag:
onnx.save(model_sim, output_path)
print("---------simplify onnx successfully---------")
else:
print("---------simplify onnx failed-----------")
- SP + LG
1、Download the weights from here superpoint_weights
2、Follow the guidence of lightglue-ONNX to export SP and LG onnx, and I suggest you to export with my params if you dont want to change any codes. Also, you can directly download the superpoint_512.onnx and superpoint_lightglue.onnx provided in model v0.1.3
See issue3 for more imformation
--dynamic
--extractor_type=superpoint
--extractor_path=YOUR_SP_ONNX_PATH
--lightglue_path=YOUR_LG_ONNX_PATH
--max_num_keypoints=YOUR_NUM / MY_NUM = 512
example :
if __name__ == "__main__":
#generate onnx model
args = parse_args()
export_onnx(**vars(args))
#simplify your onnx model
#replace it with your exsited onnx path
output_path_sp=('/home/sy/sy/Mix_ws/src/mixvpr/model/sp+sg/superpoint_512_new.onnx')
print('----------start simplifying sp-----------')
model_sim, flag = onnxsim.simplify(output_path_sp)
if flag:
onnx.save(model_sim, output_path_sp)
print("---------simplify sp successfully---------")
else:
print("---------simplify sp failed-----------")
#simplify your onnx model
#replace it with your exsited onnx path
output_path_lg=('/home/sy/sy/Mix_ws/src/mixvpr/model/sp+sg/superpoint_512_new.onnx')
print('----------start simplifying lg-----------')
model_sim, flag = onnxsim.simplify(output_path_lg)
if flag:
onnx.save(model_sim, output_path_lg)
print("---------simplify lg successfully---------")
else:
print("---------simplify lg failed-----------")
- SP_RECOVER
1、Download the weights from here superpoint_weights
2、see ultrapoint.py and follow the example
if __name__ == "__main__":
model = ultrapoint.UltraPoint().eval()
model.cpu()
# 确定好网络输入和输出路径
#input img_size
image = torch.randn(1, 1, 480, 752)
#input kpts.size
keypoints = torch.randn(1, 512, 2)
#replace it with yopur path
output_path = '/home/sy/sy/Mix_ws/src/mixvpr/model/superpoint_recover_des_480x752.onnx'
# 载入模型,输入、opset版本以及输入输出的名字
# options
torch.onnx.export(model,
(image,keypoints),
output_path,
verbose=False,
opset_version=17,
input_names=["image_r","keypoints_r"],
output_names=["scores_r","des_r"],
dynamic_axes={
"keypoints_r": {1: "num_keypoints"},
"des_r": {1: "num_keypoints"},
"scores_r": {0: "num_keypoints"},
}
)
# 模型简化 simplify your model
model_sim, flag = onnxsim.simplify(output_path)
if flag:
onnx.save(model_sim, output_path)
print("---------simplify sp_re successfully---------")
else:
print("---------simplify sp_re failed-----------")
Example:
trtexec --onnx='/home/sy/sy/Mix_ws/src/mixvpr/model/sim_800x400_512/superpoint_512.onnx' --fp16 --minShapes=image:1x1x400x800 --optShapes=image:1x1x400x800 --maxShapes=image:1x1x400x800 --saveEngine=/home/sy/sy/Mix_ws/src/mixvpr/model/sim_800x400_512/superpoint_800x400_512.engine --warmUp=500 --duration=10
//SP
trtexec --onnx='/home/sy/sy/Mix_ws/src/mixvpr/model/sim_752x480_512/superpoint_512.onnx' --fp16 --minShapes=image:1x1x480x752 --optShapes=image:1x1x480x752 --maxShapes=image:1x1x480x752 --saveEngine=/home/sy/sy/Mix_ws/src/mixvpr/model/sim_752x480_512/superpoint_752x480_512.engine --warmUp=500 --duration=10
//LG
trtexec --onnx='/home/sy/sy/lightglue_ws/src/LightGlue-ONNX/weights/my/sim_752x480_1024/superpoint_lightglue.onnx' --fp16 --saveEngine='/home/sy/sy/Mix_ws/src/mixvpr/model/sim_752x480_1024/superpoint_lightglue_10_1024.engine' --warmUp=500 --duration=10 --minShapes=kpts0:1x10x2,kpts1:1x10x2,desc0:1x10x256,desc1:1x10x256 --optShapes=kpts0:1x512x2,kpts1:1x512x2,desc0:1x512x256,desc1:1x512x256 --maxShapes=kpts0:1x1024x2,kpts1:1x1024x2,desc0:1x1024x256,desc1:1x1024x256
//SP_RE
trtexec --onnx='/home/sy/sy/Mix_ws/src/mixvpr/model/sp_re_752x480_512/superpoint_recover_des_480x752.onnx' --fp16 --saveEngine='/home/sy/sy/Mix_ws/src/mixvpr/model/sp_re_752x480_512/superpoint_recover_des_480x752.engine' --warmUp=500 --duration=10 --minShapes=keypoints_r:1x20x2 --optShapes=keypoints_r:1x150x2 --maxShapes=keypoints_r:1x512x2
//mixvpr
trtexec --onnx='/home/sy/sy/Mix_ws/src/mixvpr/model/mix1.onnx' --fp16 --saveEngine=mix1.engine --warmUp=500 --duration=10
Our method improves accuracy by 20% over vins-fusion on euroc and even more on difficult datasets such as KAIST urban and 4seasons. It is able to cope with urban highway scenarios and seasonal change scenarios.
image size | 752*480(euroc) | 800*400(4seasons) | 1280*560(KAIST urban) |
---|---|---|---|
Global Feature Extraction (ms) | 1.5 | 2 | 2.3 |
Keyframe Retrival (ms) | 0.8 | 2.2 | 1.7 |
Local Feature Extraction(512 points) (ms) | 6.1 | 5.4 | 10.3 |
Local Feature Matching (ms) | 4.1 | 4.1 | 3.8 |
Total Time cost (ms) | 12.5 | 13.7 | 18.1 |
Total Memory cost (MB) | 422 | 400 | 600 |
- Replace some functions in this project with kernal function if possible.
This project is based on Vins-Fusion
We use ceres solver for non-linear optimization, a generic camera model and GeographicLib.
I use superpoint 、lightglue、MixVPR for loop closure,and the part of TensorRT infrence is based on Linfer
The source code is released under GPLv3 license.