-
Notifications
You must be signed in to change notification settings - Fork 1.3k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #1179 from GY-GitCode/24-6-16-dev
Add implementations for the autograd resnet cifar-10
- Loading branch information
Showing
1 changed file
with
292 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,292 @@ | ||
# | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
# | ||
|
||
try: | ||
import pickle | ||
except ImportError: | ||
import cPickle as pickle | ||
|
||
from singa import singa_wrap as singa | ||
from singa import autograd | ||
from singa import tensor | ||
from singa import device | ||
from singa import opt | ||
from PIL import Image | ||
import numpy as np | ||
import os | ||
import sys | ||
import time | ||
|
||
|
||
def load_dataset(filepath): | ||
with open(filepath, 'rb') as fd: | ||
try: | ||
cifar10 = pickle.load(fd, encoding='latin1') | ||
except TypeError: | ||
cifar10 = pickle.load(fd) | ||
image = cifar10['data'].astype(dtype=np.uint8) | ||
image = image.reshape((-1, 3, 32, 32)) | ||
label = np.asarray(cifar10['labels'], dtype=np.uint8) | ||
label = label.reshape(label.size, 1) | ||
return image, label | ||
|
||
|
||
def load_train_data(dir_path='cifar-10-batches-py', num_batches=5): | ||
labels = [] | ||
batchsize = 10000 | ||
images = np.empty((num_batches * batchsize, 3, 32, 32), dtype=np.uint8) | ||
for did in range(1, num_batches + 1): | ||
fname_train_data = dir_path + "/data_batch_{}".format(did) | ||
image, label = load_dataset(check_dataset_exist(fname_train_data)) | ||
images[(did - 1) * batchsize:did * batchsize] = image | ||
labels.extend(label) | ||
images = np.array(images, dtype=np.float32) | ||
labels = np.array(labels, dtype=np.int32) | ||
return images, labels | ||
|
||
|
||
def load_test_data(dir_path='cifar-10-batches-py'): | ||
images, labels = load_dataset(check_dataset_exist(dir_path + "/test_batch")) | ||
return np.array(images, dtype=np.float32), np.array(labels, dtype=np.int32) | ||
|
||
|
||
def check_dataset_exist(dirpath): | ||
if not os.path.exists(dirpath): | ||
print( | ||
'Please download the cifar10 dataset using download_data.py (e.g. python ~/singa/examples/cifar10/download_data.py py)' | ||
) | ||
sys.exit(0) | ||
return dirpath | ||
|
||
|
||
def normalize_for_resnet(train_x, test_x): | ||
mean = [0.4914, 0.4822, 0.4465] | ||
std = [0.2023, 0.1994, 0.2010] | ||
train_x /= 255 | ||
test_x /= 255 | ||
for ch in range(0, 2): | ||
train_x[:, ch, :, :] -= mean[ch] | ||
train_x[:, ch, :, :] /= std[ch] | ||
test_x[:, ch, :, :] -= mean[ch] | ||
test_x[:, ch, :, :] /= std[ch] | ||
return train_x, test_x | ||
|
||
|
||
def resize_dataset(x, IMG_SIZE): | ||
num_data = x.shape[0] | ||
dim = x.shape[1] | ||
X = np.zeros(shape=(num_data, dim, IMG_SIZE, IMG_SIZE), dtype=np.float32) | ||
for n in range(0, num_data): | ||
for d in range(0, dim): | ||
X[n, d, :, :] = np.array(Image.fromarray(x[n, d, :, :]).resize( | ||
(IMG_SIZE, IMG_SIZE), Image.BILINEAR), | ||
dtype=np.float32) | ||
return X | ||
|
||
|
||
def augmentation(x, batch_size): | ||
xpad = np.pad(x, [[0, 0], [0, 0], [4, 4], [4, 4]], 'symmetric') | ||
for data_num in range(0, batch_size): | ||
offset = np.random.randint(8, size=2) | ||
x[data_num, :, :, :] = xpad[data_num, :, offset[0]:offset[0] + 32, | ||
offset[1]:offset[1] + 32] | ||
if_flip = np.random.randint(2) | ||
if (if_flip): | ||
x[data_num, :, :, :] = x[data_num, :, :, ::-1] | ||
return x | ||
|
||
|
||
def accuracy(pred, target): | ||
y = np.argmax(pred, axis=1) | ||
t = np.argmax(target, axis=1) | ||
a = y == t | ||
return np.array(a, "int").sum() | ||
|
||
|
||
def to_categorical(y, num_classes): | ||
y = np.array(y, dtype="int") | ||
n = y.shape[0] | ||
categorical = np.zeros((n, num_classes)) | ||
for i in range(0, n): | ||
categorical[i, y[i]] = 1 | ||
categorical = categorical.astype(np.float32) | ||
return categorical | ||
|
||
|
||
# Function to all reduce NUMPY accuracy and loss from multiple devices | ||
def reduce_variable(variable, dist_opt, reducer): | ||
reducer.copy_from_numpy(variable) | ||
dist_opt.all_reduce(reducer.data) | ||
dist_opt.wait() | ||
output = tensor.to_numpy(reducer) | ||
return output | ||
|
||
|
||
# Function to sychronize SINGA TENSOR initial model parameters | ||
def synchronize(tensor, dist_opt): | ||
dist_opt.all_reduce(tensor.data) | ||
dist_opt.wait() | ||
tensor /= dist_opt.world_size | ||
|
||
|
||
# Data partition | ||
def data_partition(dataset_x, dataset_y, global_rank, world_size): | ||
data_per_rank = dataset_x.shape[0] // world_size | ||
idx_start = global_rank * data_per_rank | ||
idx_end = (global_rank + 1) * data_per_rank | ||
return dataset_x[idx_start:idx_end], dataset_y[idx_start:idx_end] | ||
|
||
|
||
def train_cifar10(DIST=False, | ||
local_rank=None, | ||
world_size=None, | ||
nccl_id=None, | ||
partial_update=False): | ||
|
||
# Define the hypermeters for the train_cifar10 | ||
sgd = opt.SGD(lr=0.005, momentum=0.9, weight_decay=1e-5) | ||
max_epoch = 5 | ||
batch_size = 32 | ||
|
||
train_x, train_y = load_train_data() | ||
test_x, test_y = load_test_data() | ||
train_x, test_x = normalize_for_resnet(train_x, test_x) | ||
IMG_SIZE = 224 | ||
num_classes = 10 | ||
|
||
if DIST: | ||
# For distributed GPU training | ||
sgd = opt.DistOpt(sgd, | ||
nccl_id=nccl_id, | ||
local_rank=local_rank, | ||
world_size=world_size) | ||
dev = device.create_cuda_gpu_on(sgd.local_rank) | ||
|
||
# Dataset partition for distributed training | ||
train_x, train_y = data_partition(train_x, train_y, sgd.global_rank, | ||
sgd.world_size) | ||
test_x, test_y = data_partition(test_x, test_y, sgd.global_rank, | ||
sgd.world_size) | ||
world_size = sgd.world_size | ||
else: | ||
# For single GPU | ||
dev = device.create_cuda_gpu() | ||
world_size = 1 | ||
|
||
from resnet import resnet50 | ||
model = resnet50(num_classes=num_classes) | ||
|
||
tx = tensor.Tensor((batch_size, 3, IMG_SIZE, IMG_SIZE), dev, tensor.float32) | ||
ty = tensor.Tensor((batch_size,), dev, tensor.int32) | ||
num_train_batch = train_x.shape[0] // batch_size | ||
num_test_batch = test_x.shape[0] // batch_size | ||
idx = np.arange(train_x.shape[0], dtype=np.int32) | ||
|
||
if DIST: | ||
# Sychronize the initial parameters | ||
autograd.training = True | ||
x = np.random.randn(batch_size, 3, IMG_SIZE, | ||
IMG_SIZE).astype(np.float32) | ||
y = np.zeros(shape=(batch_size,), dtype=np.int32) | ||
tx.copy_from_numpy(x) | ||
ty.copy_from_numpy(y) | ||
out = model(tx) | ||
loss = autograd.softmax_cross_entropy(out, ty) | ||
param = [] | ||
for p, _ in autograd.backward(loss): | ||
synchronize(p, sgd) | ||
param.append(p) | ||
|
||
for epoch in range(max_epoch): | ||
start_time = time.time() | ||
np.random.shuffle(idx) | ||
|
||
if ((DIST == False) or (sgd.global_rank == 0)): | ||
print('Starting Epoch %d:' % (epoch)) | ||
|
||
# Training phase | ||
autograd.training = True | ||
train_correct = np.zeros(shape=[1], dtype=np.float32) | ||
test_correct = np.zeros(shape=[1], dtype=np.float32) | ||
train_loss = np.zeros(shape=[1], dtype=np.float32) | ||
|
||
for b in range(num_train_batch): | ||
x = train_x[idx[b * batch_size:(b + 1) * batch_size]] | ||
x = augmentation(x, batch_size) | ||
x = resize_dataset(x, IMG_SIZE) | ||
y = train_y[idx[b * batch_size:(b + 1) * batch_size]] | ||
tx.copy_from_numpy(x) | ||
ty.copy_from_numpy(y) | ||
out = model(tx) | ||
loss = autograd.softmax_cross_entropy(out, ty) | ||
train_correct += accuracy(tensor.to_numpy(out), | ||
to_categorical(y, num_classes)).astype( | ||
np.float32) | ||
train_loss += tensor.to_numpy(loss)[0] | ||
if not partial_update: | ||
sgd.backward_and_update(loss) | ||
else: | ||
sgd.backward_and_partial_update(loss) | ||
|
||
if DIST: | ||
# Reduce the evaluation accuracy and loss from multiple devices | ||
reducer = tensor.Tensor((1,), dev, tensor.float32) | ||
train_correct = reduce_variable(train_correct, sgd, reducer) | ||
train_loss = reduce_variable(train_loss, sgd, reducer) | ||
|
||
# Output the training loss and accuracy | ||
if ((DIST == False) or (sgd.global_rank == 0)): | ||
print('Training loss = %f, training accuracy = %f' % | ||
(train_loss, train_correct / | ||
(num_train_batch * batch_size * world_size)), | ||
flush=True) | ||
|
||
if partial_update: | ||
# Sychronize parameters before evaluation phase | ||
for p in param: | ||
synchronize(p, sgd) | ||
|
||
# Evaulation phase | ||
autograd.training = False | ||
for b in range(num_test_batch): | ||
x = test_x[b * batch_size:(b + 1) * batch_size] | ||
x = resize_dataset(x, IMG_SIZE) | ||
y = test_y[b * batch_size:(b + 1) * batch_size] | ||
tx.copy_from_numpy(x) | ||
ty.copy_from_numpy(y) | ||
out_test = model(tx) | ||
test_correct += accuracy(tensor.to_numpy(out_test), | ||
to_categorical(y, num_classes)) | ||
|
||
if DIST: | ||
# Reduce the evaulation accuracy from multiple devices | ||
test_correct = reduce_variable(test_correct, sgd, reducer) | ||
|
||
# Output the evaluation accuracy | ||
if ((DIST == False) or (sgd.global_rank == 0)): | ||
print('Evaluation accuracy = %f, Elapsed Time = %fs' % | ||
(test_correct / (num_test_batch * batch_size * world_size), | ||
time.time() - start_time), | ||
flush=True) | ||
|
||
|
||
if __name__ == '__main__': | ||
|
||
DIST = False | ||
train_cifar10(DIST=DIST) |