Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Tidy up rng functions, towards a real interface #118

Merged
merged 15 commits into from
Dec 3, 2024
2 changes: 1 addition & 1 deletion DESCRIPTION
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
Package: monty
Title: Monte Carlo Models
Version: 0.3.9
Version: 0.3.10
Authors@R: c(person("Rich", "FitzJohn", role = c("aut", "cre"),
email = "rich.fitzjohn@gmail.com"),
person("Wes", "Hinsley", role = "aut"),
Expand Down
13 changes: 13 additions & 0 deletions NAMESPACE
Original file line number Diff line number Diff line change
Expand Up @@ -3,13 +3,15 @@
S3method("+",monty_model)
S3method(cnd_footer,monty_parse_error)
S3method(coda::as.mcmc.list,monty_samples)
S3method(length,monty_rng_state)
S3method(posterior::as_draws_array,monty_samples)
S3method(posterior::as_draws_df,monty_samples)
S3method(print,monty_model)
S3method(print,monty_model_properties)
S3method(print,monty_observer)
S3method(print,monty_packer)
S3method(print,monty_packer_grouped)
S3method(print,monty_rng_state)
S3method(print,monty_runner)
S3method(print,monty_sampler)
S3method(print,monty_samples)
Expand All @@ -31,10 +33,21 @@ export(monty_model_split)
export(monty_observer)
export(monty_packer)
export(monty_packer_grouped)
export(monty_random_binomial)
export(monty_random_exponential_rate)
export(monty_random_n_binomial)
export(monty_random_n_exponential_rate)
export(monty_random_n_real)
export(monty_random_real)
export(monty_rng)
export(monty_rng_create)
export(monty_rng_distributed_pointer)
export(monty_rng_distributed_state)
export(monty_rng_jump)
export(monty_rng_long_jump)
export(monty_rng_pointer)
export(monty_rng_set_state)
export(monty_rng_state)
export(monty_runner_callr)
export(monty_runner_parallel)
export(monty_runner_serial)
Expand Down
52 changes: 40 additions & 12 deletions R/cpp11.R

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

257 changes: 249 additions & 8 deletions R/random.R
Original file line number Diff line number Diff line change
@@ -1,22 +1,263 @@
monty_random_alloc <- function(n_streams = 1L, seed = NULL,
deterministic = FALSE) {
##' Create a monty random number generator. This allows you to sample
##' random numbers from the same random number algorithms as monty
##' provides via C++ to [dust2](https://mrc-ide.github.io/dust2), and
##' which it uses within its samplers and filters. This function
##' creates the internal state, and will be passed to actual
##' generation functions `monty_random_*`, such as
##' [monty_random_real()].
##'
##' Monty's random number generation is very different to that in base
##' R. We have the concept of "streams" of random numbers, with a
##' generator having 1 or many streams. Each stream is statistically
##' independent, and can be sampled from simultaneously. When you use
##' any of the random number functions from R, you will draw one
##' number *per stream*.
##'
##' Because the random number state can have multiple streams, and we
##' return a vector, we have a separate set of functions where
##' multiple numbers are requested *per stream*; these are all
##' prefixed `monty_random_n_` (e.g., [monty_random_n_real()]). These
##' will return a matrix where you have used multiple streams, with
##' each column representing a stream. If you have a single stream
##' and you set `preserve_stream_dimension` to `FALSE` then we will
##' drop this dimension and return a matrix.
##'
##' @title Create a monty random number genreator
##'
##' @param n_streams The number of streams to create (see Details)
##'
##' @param seed The initial seed of the random number generator. This
##' can be `NULL`, in which case we seed the generator from R's
##' random number state (meaning that we respond to `set.seed` as
##' one would expect). Alternatively, you can provide an integer
##' here, but this should be used sparingly and primarily for
##' testing.
##'
##' @param n_threads The number of threads to use, if OpenMP is
##' enabled.
##'
##' @param deterministic Logical, indicating if we should use
##' "deterministic" mode where distributions return their
##' expectations and the state is never changed.
##'
##' @param preserve_stream_dimension Logical, indicating if the stream
##' dimension should be preserved in the case where `n_streams` is 1
##' and the multiple-sample functions are used. Set this to `TRUE`
##' to ensure that the rank of the result does not change with the
##' number of streams (see Details).
##'
##' @return An object of class `monty_rng_state`, which can be
##' passed as the `state` argument to random-number producing
##' functions, such as [monty_random_real]
##'
##' @export
##' @examples
##' state <- monty_rng_create()
##' state
##'
##' monty_random_real(state)
monty_rng_create <- function(n_streams = 1L, seed = NULL,
n_threads = 1L, deterministic = FALSE,
preserve_stream_dimension = FALSE) {
assert_scalar_logical(deterministic)
assert_scalar_logical(preserve_stream_dimension)
preserve_stream_dimension <- preserve_stream_dimension || n_streams > 1
ptr <- monty_rng_alloc(seed, n_streams, deterministic)
ret <- list(ptr = ptr, n_streams = n_streams, deterministic = deterministic)
class(ret) <- "monty_random_state"
ret
attr(ptr, "n_streams") <- n_streams
attr(ptr, "n_threads") <- n_threads
attr(ptr, "n_deterministic") <- deterministic
attr(ptr, "preserve_stream_dimension") <- preserve_stream_dimension
class(ptr) <- "monty_rng_state"
ptr
}


##' Get and set internal random number state
##'
##' @title Get and set random number state
##'
##' @param state The random number state, from [monty_rng_create]
##'
##' @return A vector of raws
##' @export
##' @examples
##' s1 <- monty_rng_create()
##' r1 <- monty_rng_state(s1)
##'
##' s2 <- monty_rng_create(seed = r1)
##' identical(r1, monty_rng_state(s2))
##' monty_random_real(s1)
##' monty_random_real(s2)
##'
##' monty_rng_set_state(r1, s1)
##' monty_random_real(s1)
##' monty_random_real(s1)
##' monty_random_real(s2)
monty_rng_state <- function(state) {
cpp_monty_rng_state(state)
}


##' @param value A vector of raw values, typically the result of
##' exporting a random state with `monty_rng_state()`
##'
##' @export
##' @rdname monty_rng_state
monty_rng_set_state <- function(value, state) {
cpp_monty_rng_set_state(state, value)
}


##' Jump random number state. There are two "lengths" of jumps; a
##' normal jump and a long jump. The normal jump is the distance
##' between streams within a random number state, so if you have a
##' multi-stream rng this shifts states left. The long jump is used
##' to create distributed states. We will properly explain all this
##' once the interface stabilises.
##'
##' @title Jump random number state
##'
##' @param state Either a `monty_rng_state` object (created via
##' [monty_rng_create]) or a raw vector suitable for creating
##' one.
##'
##' @param n The number of jumps to take (integer, 1 or more)
##'
##' @return The `monty_rng_state` object (invisibly, modified in
##' place) or a raw vector, matching the input argument `state`
##' (visibly).
##'
##' @export
monty_rng_jump <- function(state, n = 1) {
if (is.raw(state)) {
rng <- monty_rng_create(seed = state, n_streams = length(state) %/% 32)
monty_rng_state(monty_rng_jump(rng, n))
} else {
assert_is(state, "monty_rng_state")
assert_scalar_size(n, allow_zero = FALSE)
cpp_monty_rng_jump(state, n)
invisible(state)
}
}


##' @export
##' @rdname monty_rng_jump
monty_rng_long_jump <- function(state, n = 1) {
if (is.raw(state)) {
rng <- monty_rng_create(seed = state, n_streams = length(state) %/% 32)
monty_rng_state(monty_rng_long_jump(rng, n))
} else {
assert_is(state, "monty_rng_state")
assert_scalar_size(n, allow_zero = FALSE)
cpp_monty_rng_long_jump(state, n)
invisible(state)
}
}



##' @export
print.monty_rng_state <- function(x, ...) {
cli::cli_h1("<monty_rng_state>")
cli::cli_li("{length(x)} random number stream{?s}")
cli::cli_li("{attr(x, 'n_threads')} execution thread{?s}")
invisible(x)
}


##' @export
length.monty_rng_state <- function(x) {
attr(x, "n_streams")
}


##' Generate a random number uniformly sampled on the range 0 to 1;
##' this is the most basic of all random number functions in monty and
##' all other algorithms are composed from this. Quite often, you
##' will want a number on $\[0, 1\]$ (e.g., for a Bernoulli trial), and
##' this function is the most efficient way of generating one.
##'
##' @title Sample from Uniform(0, 1)
##'
##' @param state The random number state, from [monty_rng_create]
##'
##' @return A vector of random numbers, the same length as the number
##' of streams in `state`.
##'
##' @export
##' @examples
##' state <- monty_rng_create()
##' monty_random_real(state)
##' monty_random_n_real(5, state)
monty_random_real <- function(state) {
cpp_monty_random_real(state$ptr)
cpp_monty_random_real(state)
}


##' @param n_samples The number of samples to take, **per stream**.
##' When using the multiple-sample interface, all other parameters
##' are held constant (per stream).
##'
##' @export
##' @rdname monty_random_real
monty_random_n_real <- function(n_samples, state) {
cpp_monty_random_n_real(n_samples, state)
}


##' Sample from the binomial distribution
##'
##' @title Sample from binomial distribution
##'
##' @param size The number of trials
##'
##' @param prob The probability of success on each trial
##'
##' @inheritParams monty_random_real
##' @inherit monty_random_real return
##'
##' @export
##' @examples
##' state <- monty_rng_create()
##' monty_random_binomial(10, 0.3, state)
##' table(monty_random_n_binomial(2000, 10, 0.3, state))
monty_random_binomial <- function(size, prob, state) {
cpp_monty_random_binomial(size, prob, state$ptr)
cpp_monty_random_binomial(size, prob, state)
}


##' @export
##' @rdname monty_random_binomial
monty_random_n_binomial <- function(n_samples, size, prob, state) {
cpp_monty_random_n_binomial(n_samples, size, prob, state)
}


##' Sample from an exponential distribution. There are two
##' parameterisations here, one in terms of the rate of the
##' exponential, and one in terms of the mean (or scale).
##'
##' @title Sample from exponential distribution
##'
##' @param rate The rate of the exponential
##'
##' @inheritParams monty_random_real
##' @inherit monty_random_real return
##'
##' @export
##' @rdname monty_random_exponential
##' @examples
##' state <- monty_rng_create()
##' monty_random_exponential_rate(0.2, state)
##' summary(monty_random_n_exponential_rate(2000, 0.2, state))
monty_random_exponential_rate <- function(rate, state) {
cpp_monty_random_exponential_rate(rate, state$ptr)
cpp_monty_random_exponential_rate(rate, state)
}


##' @export
##' @rdname monty_random_exponential
monty_random_n_exponential_rate <- function(n_samples, rate, state) {
cpp_monty_random_n_exponential_rate(n_samples, rate, state)
}
Loading
Loading