Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[SpatialPartitioning] Change part of the kdtree API #123

Merged
merged 3 commits into from
Dec 18, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions CHANGELOG
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,8 @@ Ponca changelog
--------------------------------------------------------------------------------
Current head (v.1.3 RC)

- API
- [SpatialPartitioning] Change part of the kdtree API (#123)

--------------------------------------------------------------------------------
v.1.2
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -41,7 +41,7 @@ class KdTreeKNearestQueryBase : public KdTreeQuery<Traits>, public QueryType

protected:
inline void search(){
KdTreeQuery<Traits>::search_internal(QueryType::getInputPosition(QueryAccelType::m_kdtree->point_data()),
KdTreeQuery<Traits>::search_internal(QueryType::getInputPosition(QueryAccelType::m_kdtree->points()),
[](IndexType, IndexType){},
[this](){return QueryType::descentDistanceThreshold();},
[this](IndexType idx){return QueryType::skipIndexFunctor(idx);},
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -41,7 +41,7 @@ class KdTreeNearestQueryBase : public KdTreeQuery<Traits>, public QueryType

protected:
inline void search(){
KdTreeQuery<Traits>::search_internal(QueryType::getInputPosition(QueryAccelType::m_kdtree->point_data()),
KdTreeQuery<Traits>::search_internal(QueryType::getInputPosition(QueryAccelType::m_kdtree->points()),
[](IndexType, IndexType){},
[this](){return QueryType::descentDistanceThreshold();},
[this](IndexType idx){return QueryType::skipIndexFunctor(idx);},
Expand Down
6 changes: 3 additions & 3 deletions Ponca/src/SpatialPartitioning/KdTree/Query/kdTreeQuery.h
Original file line number Diff line number Diff line change
Expand Up @@ -44,9 +44,9 @@ class KdTreeQuery
ProcessNeighborFunctor processNeighborFunctor
)
{
const auto& nodes = m_kdtree->node_data();
const auto& points = m_kdtree->point_data();
const auto& indices = m_kdtree->index_data();
const auto& nodes = m_kdtree->nodes();
const auto& points = m_kdtree->points();
const auto& indices = m_kdtree->samples();

if (nodes.empty() || points.empty() || indices.empty())
throw std::invalid_argument("Empty KdTree");
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -47,8 +47,8 @@ class KdTreeRangeQueryBase : public KdTreeQuery<Traits>, public QueryType

protected:
inline void advance(Iterator& it){
const auto& points = QueryAccelType::m_kdtree->point_data();
const auto& indices = QueryAccelType::m_kdtree->index_data();
const auto& points = QueryAccelType::m_kdtree->points();
const auto& indices = QueryAccelType::m_kdtree->samples();
const auto& point = QueryType::getInputPosition(points);

auto descentDistanceThreshold = [this](){return QueryType::descentDistanceThreshold();};
Expand Down
20 changes: 14 additions & 6 deletions Ponca/src/SpatialPartitioning/KdTree/kdTree.h
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@

#include "./kdTreeTraits.h"

#include <iostream>
#include <memory>
#include <numeric>
#include <type_traits>
Expand Down Expand Up @@ -186,7 +187,7 @@ class KdTreeBase
Converter c);

inline bool valid() const;
inline std::string to_string(bool verbose = false) const;
inline void print(std::ostream& os, bool verbose = false) const;

// Accessors ---------------------------------------------------------------
public:
Expand All @@ -195,7 +196,7 @@ class KdTreeBase
return m_nodes.size();
}

inline IndexType index_count() const
inline IndexType sample_count() const
{
return (IndexType)m_indices.size();
}
Expand All @@ -210,22 +211,22 @@ class KdTreeBase
return m_leaf_count;
}

inline PointContainer& point_data()
inline PointContainer& points()
{
return m_points;
};

inline const PointContainer& point_data() const
inline const PointContainer& points() const
{
return m_points;
};

inline const NodeContainer& node_data() const
inline const NodeContainer& nodes() const
{
return m_nodes;
}

inline const IndexContainer& index_data() const
inline const IndexContainer& samples() const
{
return m_indices;
}
Expand Down Expand Up @@ -295,3 +296,10 @@ public :

#include "./kdTree.hpp"
} // namespace Ponca

template <typename Traits>
std::ostream& operator<<(std::ostream& os, const Ponca::KdTreeBase<Traits>& kdtree)
{
kdtree.print(os);
return os;
}
52 changes: 24 additions & 28 deletions Ponca/src/SpatialPartitioning/KdTree/kdTree.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -42,7 +42,7 @@ inline void KdTreeBase<Traits>::buildWithSampling(PointUserContainer&& points,

m_indices = std::move(sampling);

this->build_rec(0, 0, index_count(), 1);
this->build_rec(0, 0, sample_count(), 1);

PONCA_DEBUG_ASSERT(this->valid());
}
Expand Down Expand Up @@ -73,7 +73,7 @@ bool KdTreeBase<Traits>::valid() const
const NodeType& node = m_nodes[n];
if(node.is_leaf())
{
if(index_count() <= node.leaf_start() || node.leaf_start()+node.leaf_size() > index_count())
if(sample_count() <= node.leaf_start() || node.leaf_start()+node.leaf_size() > sample_count())
{
return false;
}
Expand All @@ -95,52 +95,48 @@ bool KdTreeBase<Traits>::valid() const
}

template<typename Traits>
std::string KdTreeBase<Traits>::to_string(bool verbose) const
void KdTreeBase<Traits>::print(std::ostream& os, bool verbose) const
{
std::stringstream str;

str << "KdTree:";
str << "\n MaxNodes: " << MAX_NODE_COUNT;
str << "\n MaxPoints: " << MAX_POINT_COUNT;
str << "\n MaxDepth: " << Traits::MAX_DEPTH;
str << "\n PointCount: " << point_count();
str << "\n SampleCount: " << index_count();
str << "\n NodeCount: " << node_count();
os << "KdTree:";
os << "\n MaxNodes: " << MAX_NODE_COUNT;
os << "\n MaxPoints: " << MAX_POINT_COUNT;
os << "\n MaxDepth: " << Traits::MAX_DEPTH;
os << "\n PointCount: " << point_count();
os << "\n SampleCount: " << sample_count();
os << "\n NodeCount: " << node_count();

if (!verbose)
{
return str.str();
return;
}

str << "\n Samples: [";
os << "\n Samples: [";
static constexpr IndexType SAMPLES_PER_LINE = 10;
for (IndexType i = 0; i < index_count(); ++i)
for (IndexType i = 0; i < sample_count(); ++i)
{
str << (i == 0 ? "" : ",");
str << (i % SAMPLES_PER_LINE == 0 ? "\n " : " ");
str << m_indices[i];
os << (i == 0 ? "" : ",");
os << (i % SAMPLES_PER_LINE == 0 ? "\n " : " ");
os << m_indices[i];
}

str << "]\n Nodes:";
os << "]\n Nodes:";
for (NodeIndexType n = 0; n < node_count(); ++n)
{
const NodeType& node = m_nodes[n];
if (node.is_leaf())
{
str << "\n - Type: Leaf";
str << "\n Start: " << node.leaf_start();
str << "\n Size: " << node.leaf_size();
os << "\n - Type: Leaf";
os << "\n Start: " << node.leaf_start();
os << "\n Size: " << node.leaf_size();
}
else
{
str << "\n - Type: Inner";
str << "\n SplitDim: " << node.inner_split_dim();
str << "\n SplitValue: " << node.inner_split_value();
str << "\n FirstChild: " << node.inner_first_child_id();
os << "\n - Type: Inner";
os << "\n SplitDim: " << node.inner_split_dim();
os << "\n SplitValue: " << node.inner_split_value();
os << "\n FirstChild: " << node.inner_first_child_id();
}
}

return str.str();
}

template<typename Traits>
Expand Down
6 changes: 3 additions & 3 deletions Ponca/src/SpatialPartitioning/KnnGraph/knnGraph.h
Original file line number Diff line number Diff line change
Expand Up @@ -70,8 +70,8 @@ template <typename Traits> class KnnGraphBase
/// \warning KdTreeTraits compatibility is checked with static assertion
template<typename KdTreeTraits>
inline KnnGraphBase(const KdTreeBase<KdTreeTraits>& kdtree, int k = 6)
: m_k(std::min(k,kdtree.index_count()-1)),
m_kdTreePoints(kdtree.point_data())
: m_k(std::min(k,kdtree.sample_count()-1)),
m_kdTreePoints(kdtree.points())
{
static_assert( std::is_same<typename Traits::DataPoint, typename KdTreeTraits::DataPoint>::value,
"KdTreeTraits::DataPoint is not equal to Traits::DataPoint" );
Expand All @@ -85,7 +85,7 @@ template <typename Traits> class KnnGraphBase
// \fixme Update API to properly handle kdtree subsampling
const int cloudSize = kdtree.point_count();
{
const int samplesSize = kdtree.index_count();
const int samplesSize = kdtree.sample_count();
eigen_assert(cloudSize == samplesSize);
}

Expand Down
2 changes: 1 addition & 1 deletion examples/cpp/ponca_basic_cpu.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -89,7 +89,7 @@ void test_fit(Fit& _fit, const KdTree<MyPoint>& tree, const VectorType& _p)
// Iterate over samples and _fit the primitive
for(int i : tree.range_neighbors(_p, tmax) )
{
_fit.addNeighbor( tree.point_data()[i] );
_fit.addNeighbor( tree.points()[i] );
}

//finalize fitting
Expand Down
2 changes: 1 addition & 1 deletion examples/cpp/ponca_customize_kdtree.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -80,7 +80,7 @@ int main()
<< *kdtree.nearest_neighbor(query_pt).begin() << std::endl;

//! [ReadCustomProperties]
auto bbox = kdtree.node_data()[0].getAabb();
auto bbox = kdtree.nodes()[0].getAabb();
if (bbox) {
std::cout << "Root bounding box is as follows: \n"
<< " Center: " << bbox->center()
Expand Down
4 changes: 2 additions & 2 deletions tests/src/basket.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -70,7 +70,7 @@ void testBasicFunctionalities(const KdTree<typename Fit::DataPoint>& tree, typen
typedef typename DataPoint::VectorType VectorType;
typedef typename Fit::WFunctor WeightFunc;

const auto& vectorPoints = tree.point_data();
const auto& vectorPoints = tree.points();

// Test for each point if the fitted sphere correspond to the theoretical sphere
#ifdef NDEBUG
Expand Down Expand Up @@ -135,7 +135,7 @@ void testIsSame(const KdTree<typename Fit1::DataPoint>& tree,
typedef typename Fit1::Scalar Scalar;
typedef typename Fit1::VectorType VectorType;
typedef typename Fit1::WFunctor WeightFunc;
const auto& vectorPoints = tree.point_data();
const auto& vectorPoints = tree.points();

// Test for each point if the fitted sphere correspond to the theoretical sphere
#ifdef NDEBUG
Expand Down
Loading