-
Notifications
You must be signed in to change notification settings - Fork 218
Speeding Builds
The VOLTTRON build process is straightforward enough, but it can be a bit slow. It relies on pip to download, build, and install required third-party packages. The problem is that pip does very little to cache the results of builds, especially those which require compilation. In fact, the only thing pip caches is the downloaded source archives. While this speeds up the download process and lightens the burden of the Python package index (PyPi) server(s), it does little to improve the overall build speed. The majority of this document will focus on three techniques for improving VOLTTRON build times, including the pip download cache. But before we begin, let's discuss what is involve in building VOLTTRON.
VOLTTRON can actually be built just like any other Python project. It includes a setup.py
script in the project root so one can perform the standard build, install, sdist_*, and bdist_*, etc. commands. That's great if we have some project which requires VOLTTRON, but that is not the typical use case for VOLTTRON. Usually, and especially for developers, VOLTTRON is run in a virtual environment so its dependencies can be easily met. Enter bootstrap.py
.
Sitting next to setup.py
in the project root is bootstrap.py
, a script designed to bootstrap a virtual environment and make dependency installation a repeatable process. Bootstrapping occurs in two stages: download virtualenv
, using it to create a virtual environment, and download and install dependencies. The first, or bootstrap, stage typically happens once. The second, or update, stage happens many times as dependencies are added or updated. It is the update stage that takes the majority of the time and is the stage we focus on in this document.
To perform the bootstrap stage, bootstrap.py
must be executed using the system Python interpreter.
$ python2.7 bootstrap.py
The above command assumes python2.7
is in the PATH
and creates the virtual environment in the default env
directory. After the virtual environment is created, the update stage is automatically started by executing bootstrap.py
using the python interpreter in the newly created virtual environment. Subsequent updates must also use the interpreter in the virtual environment.
$ env/bin/python bootstrap.py
Multiple options are available to alter the behavior of bootstrap.py. Use the --help
option to list options and show the script's usage message.
$ env/bin/python bootstrap.py --help usage: bootstrap: python2.7 bootstrap.py [options] update: $VIRTUAL_ENV/bin/python bootstrap.py [options] Bootstrap and update a virtual Python environment for VOLTTRON development. optional arguments: -h, --help show this help message and exit -q, --quiet produce less output -v, --verbose produce extra output bootstrap options: --envdir VIRTUAL_ENV alternate location for virtual environment --force force installing in non-empty directory -o, --only-virtenv create virtual environment and exit (skip install) --prompt PROMPT provide alternate prompt in activated environment (default: (volttron)) update options: -u, --upgrade upgrade installed packages -w, --wheel build wheels in the pip wheelhouse The first invocation of this script, which should be made using the system Python, will create a virtual Python environment in the 'env' subdirectory in the same directory as this script or in the directory given by the --envdir option. Subsequent invocations of this script should use the Python executable installed in the virtual environment.
Enough about bootstrap.py
. Let's move on to the magic. As we do, please note the following about the output of commands:
- Ellipses (...) are used to denote where excessive drivel was cut out to make this document shorter and more readable
- Lines beginning with a plus (+) in
bootstrap.py
output show the actual calls to pip or easy_install, including all arguments.
Oh, yeah. That reminds me that two packages require special handling. BACpypes must be installed using easy_install because it is only offered as an egg and pip doesn't install from eggs. It will always be downloaded, if it isn't already installed, and will not benefit from any of the speedups below. And pyzmq is handled separately to pass options to its setup.py.
Okay. On with the show.
Before building, we need to clone the VOLTTRON repository. We make sure to checkout the master branch to get the latest bootstrap script which has the special sauce for the real speed-up.
[volttron@inamatus ~]$ git clone -b master https://github.com/VOLTTRON/volttron Cloning into 'volttron'... remote: Counting objects: 3268, done. remote: Compressing objects: 100% (122/122), done. Receiving objects: 100% (3268/3268), 14.25 MiB | 749.00 KiB/s, done. Resolving deltas: 100% (2070/2070), done. Checking connectivity... done.
Let's move into that directory where the remainder of our time will be spent.
[volttron@inamatus ~]$ cd volttron/
Now that we have the code, we are ready for testing. We'll start with the slow method and work toward the fastest.
Since version 6.0, pip caches downloaded source files to speed the download and install process when a package is once again required. The default location for this cache on Linux is in $HOME/.cache/pip
(or ~/.cache/pip
). As can be seen by the next command, we currently have no cache.
[volttron@inamatus volttron]$ find ~/.cache/pip find: `/home/volttron/.cache/pip': No such file or directory
So let's try bootstrapping the environment. We'll use bash's built-in time
command to time the execution of each bootstrap command for comparison.
[volttron@inamatus volttron]$ time python2.7 bootstrap.py Creating virtual Python environment Downloading virtualenv DOAP record Downloading virtualenv 12.0.7 New python executable in /home/volttron/volttron/env/bin/python2.7 Also creating executable in /home/volttron/volttron/env/bin/python Installing setuptools, pip...done. Installing required packages + easy_install BACpypes>=0.10,<0.11 ... + pip install --global-option --quiet --install-option --zmq=bundled --no-deps pyzmq>=14.3,<15 ... + pip install --global-option --quiet --editable ./lib/jsonrpc --editable . --requirement ./requirements.txt ... Successfully installed Smap-2.0.24c780d avro-1.7.7 configobj-5.0.6 ecdsa-0.13 flexible-jsonrpc gevent-1.0.1 greenlet-0.4.5 monotonic-0.1 numpy-1.9.1 pandas-0.15.2 paramiko-1.15.2 pycrypto-2.6.1 pymodbus-1.2.0 pyserial-2.7 python-dateutil-2.4.0 pytz-2014.10 requests-2.5.3 simplejson-3.6.5 six-1.9.0 twisted-15.0.0 volttron-2.0 wheel-0.24.0 zope.interface-4.1.2 real 9m2.299s user 7m51.790s sys 0m14.450s
Whew! The build took just over nine minutes on my nearly-4-year-old MacBook Pro running Arch Linux. In case you are wondering about my system's name, as seen in the bash prompt, inamatus is Latin for unloved. I'll leave it as an exercise for the user to determine why my system is unloved (hint: it has to do with a wonderful fruit with a bite missing from the side).
Anyway, let's have another look at the pip download cache.
[volttron@inamatus volttron]$ find ~/.cache/pip -type f /home/volttron/.cache/pip/http/9/a/b/2/1/9ab21efc4225c8eb9aa41d1c76abef2a53babcefa438a79fa4e981ce /home/volttron/.cache/pip/http/9/2/6/7/2/92672ab99ac77960252018fbcb4f40984eef60ba5588229a729f18f5 /home/volttron/.cache/pip/http/9/e/6/1/9/9e61964f51d8a05a20ecf21eef694877f28cb654a123ce1316ff77e5 /home/volttron/.cache/pip/http/9/7/7/1/a/9771a6b64f3294ac335fdb8574cd3564e21c130924697381d72fd04d /home/volttron/.cache/pip/http/a/a/7/e/8/aa7e8bc2af1068a43747b0f771b426b7dcf7708283ca3ce3d92a2afc ... /home/volttron/.cache/pip/http/8/f/9/0/d/8f90d7cf09a2b5380a319b0df8eed268be28d590b6b5f71598a3b56f /home/volttron/.cache/pip/http/8/d/e/d/a/8deda849bcfd627b8587addf049f79bb333dd8fe1eae1d5053881039 /home/volttron/.cache/pip/http/8/8/7/a/6/887a67fb460d57a10a50deef3658834b9ac01722244315227d334628 /home/volttron/.cache/pip/http/5/5/4/e/2/554e2be8d96625aa74a4e0c4ee4a4b1ca10a442c2877bd3fff96e2a6 /home/volttron/.cache/pip/http/1/d/c/8/3/1dc83c11a861a2bc20d9c0407b41089eba236796ba80c213511f1f74 /home/volttron/.cache/pip/log/debug.log
The output is truncated because it was long and boring. The important thing is that it now exists. Next let's remove the virtual environment and rebuild to see what effect the download cache has on our build time.
[volttron@inamatus volttron]$ rm -rf env [volttron@inamatus volttron]$ time python2.7 bootstrap.py ... real 8m35.387s user 7m50.770s sys 0m14.170s
Notice that our CPU time was nearly the same, about 8 minutes (user + sys). So the remaining time was likely spent on I/O, which was reduced by about 30 seconds. We need something else to reduce CPU time. Enter ccache.
What is ccache? According to the official ccache site,
ccache is a compiler cache. It speeds up recompilation by caching the result of previous compilations and detecting when the same compilation is being done again.
Sounds like just the thing we need. ccache is already properly configured on my system, it just needs to be placed early in the PATH
to be found before the official gcc compilers.
[volttron@inamatus volttron]$ which gcc /usr/bin/gcc [volttron@inamatus volttron]$ export PATH=/usr/lib/ccache/bin:$PATH [volttron@inamatus volttron]$ which gcc /usr/lib/ccache/bin/gcc
Now to prove to ourselves that the cache will be filled during the next run, let's have a look at the cache status.
[volttron@inamatus volttron]$ ccache -s cache directory /home/volttron/.ccache primary config /home/volttron/.ccache/ccache.conf secondary config (readonly) /etc/ccache.conf cache hit (direct) 0 cache hit (preprocessed) 0 cache miss 0 files in cache 0 cache size 0.0 kB max cache size 5.0 GB
The cache is indeed empty.
Nothing up my sleeve... Presto!
[volttron@inamatus volttron]$ rm -rf env [volttron@inamatus volttron]$ time python2.7 bootstrap.py ... real 6m3.496s user 4m57.960s sys 0m10.880s
One might expect a ccache build to take slightly longer than the baseline on the first build within a single project. This build completed about two minutes faster. Let's look at the ccache status to discover why.
[volttron@inamatus volttron]$ ccache -s cache directory /home/volttron/.ccache primary config /home/volttron/.ccache/ccache.conf secondary config (readonly) /etc/ccache.conf cache hit (direct) 204 cache hit (preprocessed) 23 cache miss 633 called for link 140 called for preprocessing 95 compile failed 1139 preprocessor error 4 bad compiler arguments 5 autoconf compile/link 103 no input file 19 files in cache 1316 cache size 26.1 MB max cache size 5.0 GB
Ah ha. There were a total of 227 cache hits, meaning that some of the files were identical across all the built packages and the cached version could be used rather than recompiling. Let's see how subsequent builds improve with few cache misses.
[volttron@inamatus volttron]$ rm -rf env [volttron@inamatus volttron]$ time python2.7 bootstrap.py ... real 3m15.811s user 2m24.890s sys 0m7.090s
Wow! Now we're cooking with gas. Build times have been cut to nearly 1/3 of our baseline. This ccache status shows only 14 cache misses over our previous run:
[volttron@inamatus volttron]$ ccache -s cache directory /home/volttron/.ccache primary config /home/volttron/.ccache/ccache.conf secondary config (readonly) /etc/ccache.conf cache hit (direct) 1038 cache hit (preprocessed) 35 cache miss 647 called for link 280 called for preprocessing 190 compile failed 2278 preprocessor error 8 bad compiler arguments 10 autoconf compile/link 206 no input file 38 files in cache 1365 cache size 35.0 MB max cache size 5.0 GB
So using ccache is a big win. Anyone compiling C or C++ on a Linux system should have ccache enabled. Wait, make that must. Go, now, and enable it on your Linux boxen. Or maybe finish reading this and then go do it. But do it!
Now you're thinking "how could it get any better," right? Well, it can. What if those compiled packages only needed to be rebuilt when a new version was required instead of every time they are installed.
When pip installs a package, it downloads the source and executes the packages setup.py
like so: python setup.py install
. The install command builds the package and installs it directly into the file system. What if we could package up the build results into an archive and just extract them to the file system when the package is installed. Enter wheel.
pip supports the latest Python packaging format known as wheel. Typically this just means that it can install packages in the wheel format. However, if the wheel package is installed, pip can also build wheels from source, executing python setup.py bdist_wheel
. By default, wheels are placed in the wheelhouse directory in the current working directory. But we can alter that location by setting an environment variable (read more on configuring pip here).
[volttron@inamatus volttron]$ export PIP_WHEEL_DIR=$HOME/.cache/pip/wheelhouse
We also need to tell pip to look for the wheels, again using an environment variable. The directory needs to exist because while the wheel command will create the directory when creating the packages, pip may try to search the directory first.
[volttron@inamatus volttron]$ export PIP_FIND_LINKS=file://$PIP_WHEEL_DIR [volttron@inamatus volttron]$ mkdir $PIP_WHEEL_DIR
So to get this all working, bootstrapping now has to occur in three steps: install the virtual environment, build the wheels, and install the requirements. bootstrap.py
takes options that control its behavior. The first pass requires the -o
or --only-virtenv
option to stop bootstrap after installing the virtual environment and prevent the update stage.
[volttron@inamatus volttron]$ rm -rf env [volttron@inamatus volttron]$ time python2.7 bootstrap.py --only-virtenv Creating virtual Python environment Downloading virtualenv DOAP record Downloading virtualenv 12.0.7 New python executable in /home/volttron/volttron/env/bin/python2.7 Also creating executable in /home/volttron/volttron/env/bin/python Installing setuptools, pip...done. real 0m3.866s user 0m1.480s sys 0m0.230s
The second step requires the -w
or --wheel
option to build the wheels. Because the virtual environment already exists, bootstrap.py
must be called with the virtual environment Python, not the system Python.
[volttron@inamatus volttron]$ time env/bin/python bootstrap.py --wheel Building required packages + pip install --global-option --quiet wheel ... + pip wheel --global-option --quiet --build-option --zmq=bundled --no-deps pyzmq>=14.3,<15 ... + pip wheel --global-option --quiet --editable ./lib/jsonrpc --editable . --requirement ./requirements.txt ... Destination directory: /home/volttron/.cache/pip/wheelhouse Successfully built numpy pandas gevent monotonic pymodbus simplejson Smap greenlet pycrypto twisted pyserial configobj avro zope.interface real 3m15.431s user 2m17.980s sys 0m5.630s
It took 3.25 minutes to build the wheels (with ccache still enabled). Repeating this command results in nothing new being compiled and takes only 4 seconds. Only new versions of packages meeting the requirements will be built.
[volttron@inamatus volttron]$ time env/bin/python bootstrap.py --wheel Building required packages ... Skipping numpy, due to already being wheel. Skipping pandas, due to already being wheel. Skipping python-dateutil, due to already being wheel. Skipping requests, due to already being wheel. Skipping flexible-jsonrpc, due to being editable Skipping pyzmq, due to already being wheel. Skipping gevent, due to already being wheel. Skipping monotonic, due to already being wheel. Skipping paramiko, due to already being wheel. Skipping pymodbus, due to already being wheel. Skipping setuptools, due to already being wheel. Skipping simplejson, due to already being wheel. Skipping Smap, due to already being wheel. Skipping wheel, due to already being wheel. Skipping volttron, due to being editable Skipping pytz, due to already being wheel. Skipping six, due to already being wheel. Skipping greenlet, due to already being wheel. Skipping ecdsa, due to already being wheel. Skipping pycrypto, due to already being wheel. Skipping pyserial, due to already being wheel. Skipping twisted, due to already being wheel. Skipping configobj, due to already being wheel. Skipping avro, due to already being wheel. Skipping zope.interface, due to already being wheel. real 0m3.998s user 0m3.580s sys 0m0.360s
And let's see what is in the wheelhouse.
[volttron@inamatus volttron]$ ls ~/.cache/pip/wheelhouse Smap-2.0.24c780d-py2-none-any.whl Twisted-15.0.0-cp27-none-linux_x86_64.whl avro-1.7.7-py2-none-any.whl configobj-5.0.6-py2-none-any.whl ecdsa-0.13-py2.py3-none-any.whl gevent-1.0.1-cp27-none-linux_x86_64.whl greenlet-0.4.5-cp27-none-linux_x86_64.whl monotonic-0.1-py2-none-any.whl numpy-1.9.1-cp27-none-linux_x86_64.whl pandas-0.15.2-cp27-none-linux_x86_64.whl paramiko-1.15.2-py2.py3-none-any.whl pycrypto-2.6.1-cp27-none-linux_x86_64.whl pymodbus-1.2.0-py2-none-any.whl pyserial-2.7-py2-none-any.whl python_dateutil-2.4.0-py2.py3-none-any.whl pytz-2014.10-py2.py3-none-any.whl pyzmq-14.5.0-cp27-none-linux_x86_64.whl requests-2.5.3-py2.py3-none-any.whl setuptools-12.2-py2.py3-none-any.whl simplejson-3.6.5-cp27-none-linux_x86_64.whl six-1.9.0-py2.py3-none-any.whl wheel-0.24.0-py2.py3-none-any.whl zope.interface-4.1.2-cp27-none-linux_x86_64.whl
Now bootstrap.py
can be run without options to complete the bootstrap process, again using the virtual environment Python.
[volttron@inamatus volttron]$ time env/bin/python bootstrap.py Installing required packages + easy_install BACpypes>=0.10,<0.11 ... + pip install --global-option --quiet --install-option --zmq=bundled --no-deps pyzmq>=14.3,<15 ... + pip install --global-option --quiet --editable ./lib/jsonrpc --editable . --requirement ./requirements.txt ... Successfully installed Smap-2.0.24c780d avro-1.7.7 configobj-5.0.6 ecdsa-0.13 flexible-jsonrpc gevent-1.0.1 greenlet-0.4.5 monotonic-0.1 numpy-1.9.1 pandas-0.15.2 paramiko-1.15.2 pycrypto-2.6.1 pymodbus-1.2.0 pyserial-2.7 python-dateutil-2.4.0 pytz-2014.10 requests-2.5.3 simplejson-3.6.5 six-1.9.0 twisted-15.0.0 volttron-2.0 zope.interface-4.1.2 real 0m11.137s user 0m8.930s sys 0m0.950s
Installing from wheels completes in only 11 seconds. And if we blow away the environment and bootstrap again, it takes under 15 seconds.
[volttron@inamatus volttron]$ rm -rf env [volttron@inamatus volttron]$ time python2.7 bootstrap.py ... real 0m14.644s user 0m10.380s sys 0m1.240s
Building a clean environment now occurs in less than 15 seconds instead of the 9 minute baseline. That, my friends, is fast.
The average VOLTTRON developer probably won't care or see much benefit from the wheel optimization. The typical developer workflow does not include regularly removing the virtual environment and rebuilding. This is, however, very important for continuous integration (CI). With CI, a build server should check out a fresh copy of the source code, build it in a clean environment, and perform unit tests, notifying offending users when their changes break things. Ideally, notification of breakage should happen as soon as possible. We just shaved nearly nine minutes off the turnaround time. It also reduces the load on a shared CI build server, which is nice for everyone.
Two additional use cases present themselves: offline installs and shared builds.
Let's say we have a system that is not connected to the Internet and, therefore, cannot download packages from PyPi or any other package index. Or perhaps it doesn't have a suitable compiler. Wheels can be built on another similar, connected system and transferred by USB drive to the offline system, where they can then be installed. Note that the architecture must be identical and the OS must be very similar between the two systems for this to work.
If the two systems differ too much for a compatible binary build and the offline system has a suitable compiler, then source files can be copied from the pip download cache and transferred from the online system to the offline system for building.
If many developers are working on the same project, why not share the results of a build with the rest of the team? Here are some ideas to make it work:
- Put wheels on a shared network drive
- Run a private package index server (maybe with pypiserver)
- Expose CI built wheels using Apache, Nginx, or SimpleHTTPServer
Here are some of the issues/drawbacks to the methods described above and some possible solutions.
-
Configuring pip using environment variables
No worries. Pip uses configuration files too. And a benefit to using them is that it makes all these wheels available to other Python projects you may be working on, and vise versa.
# /home/volttron/.config/pip/pip.conf [global] wheel-dir = /home/volttron/.cache/pip/wheelhouse find-links = file:///home/volttron/.cache/pip/wheelhouse
Find more on configuring pip here.
-
pip does not clean the wheelhouse
This is not a deal-breaker. The wheel directory can just be removed and it will be recreated. Or a script can be used to remove all but the latest versions of packages.
-
Requires an additional step or two
That's the price for speed. But it can be mitigated by writing a script or bash alias to perform the steps.
Here is a quick summary of the build times executed above:
Method | Time (minutes) | |
---|---|---|
Each builds on previous | CPU | Total |
baseline | 8:07 | 9:02 |
with download cache | 8:05 | 8:35 |
ccache, first run | 5:09 | 6:03 |
ccache, subsequent runs | 2:32 | 3:16 |
wheel, first run | 2:35 | 3:30 |
wheel, subsequent runs | 0:12 | 0:15 |
Not everyone cares about build times, but for those who do, pre-building Python wheels is a great way to improve install times. At a very minimum, every Python developer installing compiled packages will benefit from using ccache.
The techniques used in this document aren't just for VOLTTRON, either. They are generally useful for all moderately sized Python projects.
If you haven't installed ccache yet, go do it. There is no excuse.
- Platform Agent
- VOLTTRON Central Agent
- Platform Commands
- Platform Configuration
- [Platform Hardening Security Recommendations] (Linux-Platform-Hardening-Recommendations-for-VOLTTRON-users)
- ...
- [Building VOLTTRON] (Building-VOLTTRON)
- Example Agents
- Agent Development
- [Shortcut Scripts] (Scripts)
- [VOLTTRON Conventions] (Conventions)
- [sMAP Test Server] (sMAP-Test-Instance)
- [Design Discussions] (Design Discussions)
- VIP
- VIP - VOLTTRON Interconnect Protocol
- RPC by example
- VIP - Known Identities
- VIP - Authentication
- VIP - Authorization
- Protecting Pub/Sub Topics
- Setup Eclipse for VOLTTRON
- Deployment Walkthrough
- Forward Historian Walkthrough
- [Create New Historian Agent] (Developing-Historian-Agents)
- [Create New Driver Agent] (Develop-Driver-Agent)
- [Developing With Eclipse] (Eclipse)
- Migrations
- [2.x to 3.x Migration](2.x-to 3.x-Migration)
- 1.2 to 2.0 Migration
- [Deployment Recommendations](Recommendations for Deployments)
VOLTTRON Versions and Features
Transactional Network Platform Overview
- Established Topics
- Working with the Actuator Agent
- Logging
- [Multi-Node Communication] (MultiBuildingMessaging)
Information Exchange Standards