-
Notifications
You must be signed in to change notification settings - Fork 98
CVTTPS2DQ
Intel Architecture Software Developer's Manual (July 2017)
CVTTPS2DQ - Convert with Truncation Packed Single-Precision Floating-Point Values to Packed Signed Doubleword Integer Values
Opcode/ Instruction | Op / En | 64/32 bit Mode Support | CPUID Feature Flag | Description |
F3 0F 5B /r CVTTPS2DQ xmm1, xmm2/m128 | RM | V/V | SSE2 | Convert four packed single-precision floating-point values from xmm2/mem to four packed signed doubleword values in xmm1 using truncation. |
VEX.128.F3.0F.WIG 5B /r VCVTTPS2DQ xmm1, xmm2/m128 | RM | V/V | AVX | Convert four packed single-precision floating-point values from xmm2/mem to four packed signed doubleword values in xmm1 using truncation. |
VEX.256.F3.0F.WIG 5B /r VCVTTPS2DQ ymm1, ymm2/m256 | RM | V/V | AVX | Convert eight packed single-precision floating-point values from ymm2/mem to eight packed signed doubleword values in ymm1 using truncation. |
EVEX.128.F3.0F.W0 5B /r VCVTTPS2DQ xmm1 {k1}{z}, xmm2/m128/m32bcst | FV | V/V | AVX512VL AVX512F | Convert four packed single precision floating-point values from xmm2/m128/m32bcst to four packed signed doubleword values in xmm1 using truncation subject to writemask k1. |
EVEX.256.F3.0F.W0 5B /r VCVTTPS2DQ ymm1 {k1}{z}, ymm2/m256/m32bcst | FV | V/V | AVX512VL AVX512F | Convert eight packed single precision floating-point values from ymm2/m256/m32bcst to eight packed signed doubleword values in ymm1 using truncation subject to writemask k1. |
EVEX.512.F3.0F.W0 5B /r VCVTTPS2DQ zmm1 {k1}{z}, zmm2/m512/m32bcst {sae} | FV | V/V | AVX512F | Convert sixteen packed single-precision floating-point values from zmm2/m512/m32bcst to sixteen packed signed doubleword values in zmm1 using truncation subject to writemask k1. |
Op/En | Operand 1 | Operand 2 | Operand 3 | Operand 4 |
RM | ModRM:reg (w) | ModRM:r/m (r) | NA | NA |
FV | ModRM:reg (w) | ModRM:r/m (r) | NA | NA |
Converts four, eight or sixteen packed single-precision floating-point values in the source operand to four, eight or sixteen signed doubleword integers in the destination operand.
When a conversion is inexact, a truncated (round toward zero) value is returned. If a converted result is larger than the maximum signed doubleword integer, the floating-point invalid exception is raised, and if this exception is masked, the indefinite integer value (80000000H) is returned.
EVEX encoded versions: The source operand is a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a 32-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally updated with writemask k1.
VEX.256 encoded version: The source operand is a YMM register or 256- bit memory location. The destination operand is a YMM register. The upper bits (MAX_VL-1:256) of the corresponding ZMM register destination are zeroed.
VEX.128 encoded version: The source operand is an XMM register or 128- bit memory location. The destination operand is a XMM register. The upper bits (MAX_VL-1:128) of the corresponding ZMM register destination are zeroed.
128-bit Legacy SSE version: The source operand is an XMM register or 128- bit memory location. The destination operand is an XMM register. The upper bits (MAX_VL-1:128) of the corresponding ZMM register destination are unmodified.
Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instructions will #UD.
VCVTTPS2DQ (EVEX encoded versions) when src operand is a register
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j ← 0 TO KL-1
i ← j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] ←
Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[i+31:i])
ELSE
IF *merging-masking*
; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE
; zeroing-masking
DEST[i+31:i] ← 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] ← 0
VCVTTPS2DQ (EVEX encoded versions) when src operand is a memory source
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j ← 0 TO 15
i ← j * 32
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1)
THEN
DEST[i+31:i] ←
Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[31:0])
ELSE
DEST[i+31:i] ←
Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[i+31:i])
FI;
ELSE
IF *merging-masking*
; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE
; zeroing-masking
DEST[i+31:i] ← 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] ← 0
VCVTTPS2DQ (VEX.256 encoded version)
DEST[31:0] ←Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[31:0])
DEST[63:32] ←Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[63:32])
DEST[95:64] ←Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[95:64])
DEST[127:96] ←Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[127:96)
DEST[159:128] ←Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[159:128])
DEST[191:160] ←Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[191:160])
DEST[223:192] ←Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[223:192])
DEST[255:224] ←Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[255:224])
VCVTTPS2DQ (VEX.128 encoded version)
DEST[31:0] ←Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[31:0])
DEST[63:32] ←Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[63:32])
DEST[95:64] ←Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[95:64])
DEST[127:96] ←Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[127:96])
DEST[MAX_VL-1:128] ←0
CVTTPS2DQ (128-bit Legacy SSE version)
DEST[31:0] ←Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[31:0])
DEST[63:32] ←Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[63:32])
DEST[95:64] ←Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[95:64])
DEST[127:96] ←Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[127:96])
DEST[MAX_VL-1:128] (unmodified)
VCVTTPS2DQ __m512i _mm512_cvttps_epi32( __m512 a);
VCVTTPS2DQ __m512i _mm512_mask_cvttps_epi32( __m512i s, __mmask16 k, __m512 a);
VCVTTPS2DQ __m512i _mm512_maskz_cvttps_epi32( __mmask16 k, __m512 a);
VCVTTPS2DQ __m512i _mm512_cvtt_roundps_epi32( __m512 a, int sae);
VCVTTPS2DQ __m512i _mm512_mask_cvtt_roundps_epi32( __m512i s, __mmask16 k, __m512 a, int sae);
VCVTTPS2DQ __m512i _mm512_maskz_cvtt_roundps_epi32( __mmask16 k, __m512 a, int sae);
VCVTTPS2DQ __m256i _mm256_mask_cvttps_epi32( __m256i s, __mmask8 k, __m256 a);
VCVTTPS2DQ __m256i _mm256_maskz_cvttps_epi32( __mmask8 k, __m256 a);
VCVTTPS2DQ __m128i _mm_mask_cvttps_epi32( __m128i s, __mmask8 k, __m128 a);
VCVTTPS2DQ __m128i _mm_maskz_cvttps_epi32( __mmask8 k, __m128 a);
VCVTTPS2DQ __m256i _mm256_cvttps_epi32 (__m256 a)
CVTTPS2DQ __m128i _mm_cvttps_epi32 (__m128 a)
Invalid, Precision
VEX-encoded instructions, see Exceptions Type 2; additionally EVEX-encoded instructions, see Exceptions Type E2. #UD If VEX.vvvv != 1111B or EVEX.vvvv != 1111B.