Skip to content

VPMOVQD_VPMOVSQD_VPMOVUSQD

Henk-Jan Lebbink edited this page Jun 5, 2018 · 12 revisions

VPMOVQD / VPMOVSQD / VPMOVUSQD — Down Convert QWord to DWord

Opcode/ Instruction Op / En 64/32 bit Mode Support CPUID Feature Flag Description
EVEX.128.F3.0F38.W0 35 /r VPMOVQD xmm1/m128 {k1}{z}, xmm2 A V/V AVX512VL AVX512F Converts 2 packed quad-word integers from xmm2 into 2 packed double-word integers in xmm1/m128 with truncation subject to writemask k1.
EVEX.128.F3.0F38.W0 25 /r VPMOVSQD xmm1/m64 {k1}{z}, xmm2 A V/V AVX512VL AVX512F Converts 2 packed signed quad-word integers from xmm2 into 2 packed signed double-word integers in xmm1/m64 using signed saturation subject to writemask k1.
EVEX.128.F3.0F38.W0 15 /r VPMOVUSQD xmm1/m64 {k1}{z}, xmm2 A V/V AVX512VL AVX512F Converts 2 packed unsigned quad-word integers from xmm2 into 2 packed unsigned double-word integers in xmm1/m64 using unsigned saturation subject to writemask k1.
EVEX.256.F3.0F38.W0 35 /r VPMOVQD xmm1/m128 {k1}{z}, ymm2 A V/V AVX512VL AVX512F Converts 4 packed quad-word integers from ymm2 into 4 packed double-word integers in xmm1/m128 with truncation subject to writemask k1.
EVEX.256.F3.0F38.W0 25 /r VPMOVSQD xmm1/m128 {k1}{z}, ymm2 A V/V AVX512VL AVX512F Converts 4 packed signed quad-word integers from ymm2 into 4 packed signed double-word integers in xmm1/m128 using signed saturation subject to writemask k1.
EVEX.256.F3.0F38.W0 15 /r VPMOVUSQD xmm1/m128 {k1}{z}, ymm2 A V/V AVX512VL AVX512F Converts 4 packed unsigned quad-word integers from ymm2 into 4 packed unsigned double-word integers in xmm1/m128 using unsigned saturation subject to writemask k1.
EVEX.512.F3.0F38.W0 35 /r VPMOVQD ymm1/m256 {k1}{z}, zmm2 A V/V AVX512F Converts 8 packed quad-word integers from zmm2 into 8 packed double-word integers in ymm1/m256 with truncation subject to writemask k1.
EVEX.512.F3.0F38.W0 25 /r VPMOVSQD ymm1/m256 {k1}{z}, zmm2 A V/V AVX512F Converts 8 packed signed quad-word integers from zmm2 into 8 packed signed double-word integers in ymm1/m256 using signed saturation subject to writemask k1.
EVEX.512.F3.0F38.W0 15 /r VPMOVUSQD ymm1/m256 {k1}{z}, zmm2 A V/V AVX512F Converts 8 packed unsigned quad-word integers from zmm2 into 8 packed unsigned double-word integers in ymm1/m256 using unsigned saturation subject to writemask k1.

Instruction Operand Encoding

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4
A Half Mem ModRM:r/m (w) ModRM:reg (r) NA NA

Description

VPMOVQW down converts 64-bit integer elements in the source operand (the second operand) into packed double- words using truncation. VPMOVSQW converts signed 64-bit integers into packed signed doublewords using signed saturation. VPMOVUSQW convert unsigned quad-word values into unsigned double-word values using unsigned saturation.

The source operand is a ZMM/YMM/XMM register. The destination operand is a YMM/XMM/XMM register or a 256/128/64-bit memory location.

Down-converted doubleword elements are written to the destination operand (the first operand) from the least- significant doubleword. Doubleword elements of the destination operand are updated according to the writemask. Bits (MAXVL-1:256/128/64) of the register destination are zeroed.

EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

Operation

VPMOVQD instruction (EVEX encoded version) reg-reg form

    (KL, VL) = (2, 128), (4, 256), (8, 512)
    FOR j0 TO KL-1
        ij * 32
        mj * 64
        IF k1[j] OR *no writemask*
            THEN DEST[i+31:i] ← TruncateQuadWordToDWord (SRC[m+63:m])
            ELSE *zeroing-masking*
                            ; zeroing-masking
                        DEST[i+31:i] ← 0
                FI
        FI;
    ENDFOR
    DEST[MAXVL-1:VL/2] ← 0;

VPMOVQD instruction (EVEX encoded version) memory form

    (KL, VL) = (2, 128), (4, 256), (8, 512)
    FOR j0 TO KL-1
        ij * 32
        mj * 64
        IF k1[j] OR *no writemask*
            THEN DEST[i+31:i] ← TruncateQuadWordToDWord (SRC[m+63:m])
            ELSE *DEST[i+31:i] remains unchanged*
                            ; merging-masking
        FI;
    ENDFOR

VPMOVSQD instruction (EVEX encoded version) reg-reg form

    (KL, VL) = (2, 128), (4, 256), (8, 512)
    FOR j0 TO KL-1
        ij * 32
        mj * 64
        IF k1[j] OR *no writemask*
            THEN DEST[i+31:i] ← SaturateSignedQuadWordToDWord (SRC[m+63:m])
            ELSE 
                IF *merging-masking*
                            ; merging-masking
                    THEN *DEST[i+31:i] remains unchanged*
                    ELSE *zeroing-masking*
                            ; zeroing-masking
                        DEST[i+31:i] ← 0
                FI
        FI;
    ENDFOR
    DEST[MAXVL-1:VL/2] ← 0;

VPMOVSQD instruction (EVEX encoded version) memory form

    (KL, VL) = (2, 128), (4, 256), (8, 512)
    FOR j0 TO KL-1
        ij * 32
        mj * 64
        IF k1[j] OR *no writemask*
            THEN DEST[i+31:i] ← SaturateSignedQuadWordToDWord (SRC[m+63:m])
            ELSE *DEST[i+31:i] remains unchanged*
                            ; merging-masking
        FI;
    ENDFOR

VPMOVUSQD instruction (EVEX encoded version) reg-reg form

    (KL, VL) = (2, 128), (4, 256), (8, 512)
    FOR j0 TO KL-1
        ij * 32
        mj * 64
        IF k1[j] OR *no writemask*
            THEN DEST[i+31:i] ← SaturateUnsignedQuadWordToDWord (SRC[m+63:m])
            ELSE 
                IF *merging-masking*
                            ; merging-masking
                    THEN *DEST[i+31:i] remains unchanged*
                    ELSE *zeroing-masking*
                            ; zeroing-masking
                        DEST[i+31:i] ← 0
                FI
        FI;
    ENDFOR
    DEST[MAXVL-1:VL/2] ← 0;

VPMOVUSQD instruction (EVEX encoded version) memory form

    (KL, VL) = (2, 128), (4, 256), (8, 512)
    FOR j0 TO KL-1
        ij * 32
        mj * 64
        IF k1[j] OR *no writemask*
            THEN DEST[i+31:i] ← SaturateUnsignedQuadWordToDWord (SRC[m+63:m])
            ELSE *DEST[i+31:i] remains unchanged*
                            ; merging-masking
        FI;
    ENDFOR

Intel C/C++ Compiler Intrinsic Equivalents

VPMOVQD __m256i _mm512_cvtepi64_epi32( __m512i a);
VPMOVQD __m256i _mm512_mask_cvtepi64_epi32(__m256i s, __mmask8 k, __m512i a);
VPMOVQD __m256i _mm512_maskz_cvtepi64_epi32( __mmask8 k, __m512i a);
VPMOVQD void _mm512_mask_cvtepi64_storeu_epi32(void * d, __mmask8 k, __m512i a);
VPMOVSQD __m256i _mm512_cvtsepi64_epi32( __m512i a);
VPMOVSQD __m256i _mm512_mask_cvtsepi64_epi32(__m256i s, __mmask8 k, __m512i a);
VPMOVSQD __m256i _mm512_maskz_cvtsepi64_epi32( __mmask8 k, __m512i a);
VPMOVSQD void _mm512_mask_cvtsepi64_storeu_epi32(void * d, __mmask8 k, __m512i a);
VPMOVUSQD __m256i _mm512_cvtusepi64_epi32( __m512i a);
VPMOVUSQD __m256i _mm512_mask_cvtusepi64_epi32(__m256i s, __mmask8 k, __m512i a);
VPMOVUSQD __m256i _mm512_maskz_cvtusepi64_epi32( __mmask8 k, __m512i a);
VPMOVUSQD void _mm512_mask_cvtusepi64_storeu_epi32(void * d, __mmask8 k, __m512i a);
VPMOVUSQD __m128i _mm256_cvtusepi64_epi32(__m256i a);
VPMOVUSQD __m128i _mm256_mask_cvtusepi64_epi32(__m128i a, __mmask8 k, __m256i b);
VPMOVUSQD __m128i _mm256_maskz_cvtusepi64_epi32( __mmask8 k, __m256i b);
VPMOVUSQD void _mm256_mask_cvtusepi64_storeu_epi32(void * , __mmask8 k, __m256i b);
VPMOVUSQD __m128i _mm_cvtusepi64_epi32(__m128i a);
VPMOVUSQD __m128i _mm_mask_cvtusepi64_epi32(__m128i a, __mmask8 k, __m128i b);
VPMOVUSQD __m128i _mm_maskz_cvtusepi64_epi32( __mmask8 k, __m128i b);
VPMOVUSQD void _mm_mask_cvtusepi64_storeu_epi32(void * , __mmask8 k, __m128i b);
VPMOVSQD __m128i _mm256_cvtsepi64_epi32(__m256i a);
VPMOVSQD __m128i _mm256_mask_cvtsepi64_epi32(__m128i a, __mmask8 k, __m256i b);
VPMOVSQD __m128i _mm256_maskz_cvtsepi64_epi32( __mmask8 k, __m256i b);
VPMOVSQD void _mm256_mask_cvtsepi64_storeu_epi32(void * , __mmask8 k, __m256i b);
VPMOVSQD __m128i _mm_cvtsepi64_epi32(__m128i a);
VPMOVSQD __m128i _mm_mask_cvtsepi64_epi32(__m128i a, __mmask8 k, __m128i b);
VPMOVSQD __m128i _mm_maskz_cvtsepi64_epi32( __mmask8 k, __m128i b);
VPMOVSQD void _mm_mask_cvtsepi64_storeu_epi32(void * , __mmask8 k, __m128i b);
VPMOVQD __m128i _mm256_cvtepi64_epi32(__m256i a);
VPMOVQD __m128i _mm256_mask_cvtepi64_epi32(__m128i a, __mmask8 k, __m256i b);
VPMOVQD __m128i _mm256_maskz_cvtepi64_epi32( __mmask8 k, __m256i b);
VPMOVQD void _mm256_mask_cvtepi64_storeu_epi32(void * , __mmask8 k, __m256i b);
VPMOVQD __m128i _mm_cvtepi64_epi32(__m128i a);
VPMOVQD __m128i _mm_mask_cvtepi64_epi32(__m128i a, __mmask8 k, __m128i b);
VPMOVQD __m128i _mm_maskz_cvtepi64_epi32( __mmask8 k, __m128i b);
VPMOVQD void _mm_mask_cvtepi64_storeu_epi32(void * , __mmask8 k, __m128i b);

SIMD Floating-Point Exceptions

None

Other Exceptions

EVEX-encoded instruction, see Exceptions Type E6.

#UD If EVEX.vvvv != 1111B.


Source: Intel® Architecture Software Developer's Manual (May 2018)
Generated: 5-6-2018

Clone this wiki locally