-
Notifications
You must be signed in to change notification settings - Fork 98
VDBPSADBW
VDBPSADBW — Double Block Packed Sum-Absolute-Differences (SAD) on Unsigned Bytes
Opcode/ Instruction | Op / En | 64/32 bit Mode Support | CPUID Feature Flag | Description |
EVEX.NDS.128.66.0F3A.W0 42 /r ib VDBPSADBW xmm1 {k1}{z}, xmm2, xmm3/m128, imm8 | A | V/V | AVX512VL AVX512BW | Compute packed SAD word results of unsigned bytes in dword block from xmm2 with unsigned bytes of dword blocks transformed from xmm3/m128 using the shuffle controls in imm8. Results are written to xmm1 under the writemask k1. |
EVEX.NDS.256.66.0F3A.W0 42 /r ib VDBPSADBW ymm1 {k1}{z}, ymm2, ymm3/m256, imm8 | A | V/V | AVX512VL AVX512BW | Compute packed SAD word results of unsigned bytes in dword block from ymm2 with unsigned bytes of dword blocks transformed from ymm3/m256 using the shuffle controls in imm8. Results are written to ymm1 under the writemask k1. |
EVEX.NDS.512.66.0F3A.W0 42 /r ib VDBPSADBW zmm1 {k1}{z}, zmm2, zmm3/m512, imm8 | A | V/V | AVX512BW | Compute packed SAD word results of unsigned bytes in dword block from zmm2 with unsigned bytes of dword blocks transformed from zmm3/m512 using the shuffle controls in imm8. Results are written to zmm1 under the writemask k1. |
Op/En | Tuple Type | Operand 1 | Operand 2 | Operand 3 | Operand 4 |
A | Full Mem | ModRM:reg (w) | EVEX.vvvv | ModRM:r/m (r) | Imm8 |
Compute packed SAD (sum of absolute differences) word results of unsigned bytes from two 32-bit dword elements. Packed SAD word results are calculated in multiples of qword superblocks, producing 4 SAD word results in each 64-bit superblock of the destination register.
Within each super block of packed word results, the SAD results from two 32-bit dword elements are calculated as follows:
-
The lower two word results are calculated each from the SAD operation between a sliding dword element within a qword superblock from an intermediate vector with a stationary dword element in the corresponding qword superblock of the first source operand. The intermediate vector, see “Tmp1” in Figure 5-8, is constructed from the second source operand the imm8 byte as shuffle control to select dword elements within a 128-bit lane of the second source operand. The two sliding dword elements in a qword superblock of Tmp1 are located at byte offset 0 and 1 within the superblock, respectively. The stationary dword element in the qword superblock from the first source operand is located at byte offset 0.
-
The next two word results are calculated each from the SAD operation between a sliding dword element within a qword superblock from the intermediate vector Tmp1 with a second stationary dword element in the corresponding qword superblock of the first source operand. The two sliding dword elements in a qword superblock of Tmp1 are located at byte offset 2and 3 within the superblock, respectively. The stationary dword element in the qword superblock from the first source operand is located at byte offset 4.
-
The intermediate vector is constructed in 128-bits lanes. Within each 128-bit lane, each dword element of the intermediate vector is selected by a two-bit field within the imm8 byte on the corresponding 128-bits of the second source operand. The imm8 byte serves as dword shuffle control within each 128-bit lanes of the inter- mediate vector and the second source operand, similarly to PSHUFD.
The first source operand is a ZMM/YMM/XMM register. The second source operand is a ZMM/YMM/XMM register, or a 512/256/128-bit memory location. The destination operand is conditionally updated based on writemask k1 at 16-bit word granularity.
128-bit Lane of Src2 DW3 DW2 DW1 DW0 127+128*n 95+128*n 63+128*n 31+128*n 128*n imm8 shuffle control 7 5 3 1 0 00B: DW0 01B: DW1 10B: DW2 11B: DW3 127+128*n 95+128*n 63+128*n 31+128*n 128*n 128-bit Lane of Tmp1 Tmp1 qword superblock 55 47 39 31 24 39 31 23 15 8 Tmp1 sliding dword Src1 stationary dword 1 63 55 47 39 32 _ abs _ abs _ abs _ abs Tmp1 sliding dword Src1 stationary dword 0 31 23 15 7 0 _ abs _ abs _ abs _ abs + 47 39 31 23 16 Tmp1 sliding dword Src1 stationary dword 1 63 55 47 39 32 _ abs _ abs _ abs _ abs + 31 23 15 31 23 15 7 7 0 0 Tmp1 sliding dword Src1 stationary dword 0 _ abs _ abs _ abs _ abs Destination qword superblock 63 + 47 31 15 + 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
DW3 | DW2 | DW1 | DW0 | |||||||||||||||||||||||||||||||||||||||||||||||||||
01B: DW1 10B: DW2 11B: DW3 31+128*n 128*n 23 15 8 Tmp1 sliding dword Src1 stationary dword 0 15 7 0 _ abs _ abs 31 23 15 31 23 15 7 7 0 0 Tmp1 sliding dword Src1 stationary dword 0 _ abs _ abs _ abs _ abs 15 + 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
Tmp1 sliding dword Src1 stationary dword 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
Tmp1 sliding dword Src1 stationary dword 0 23 15 23 15 7 7 0 0 Tmp1 sliding dword Src1 stationary dword 0 _ abs _ abs _ abs + 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
55 | 47 | 39 | Src1 stationary dword 1 32 31 _ abs 47 39 31 23 16 Tmp1 sliding dword Src1 stationary dword 1 63 55 47 39 32 _ abs _ abs _ abs _ abs + 47 31 | 23 | 15 | 7 | Src1 stationary dword 0 0 23 15 23 15 7 7 0 0 Tmp1 sliding dword Src1 stationary dword 0 _ abs _ abs _ abs + 0 | |||||||||||||||||||||||||||||||||||||||||||||||
63 | 55 | 47 | 39 32 | _ | _ | _ | _ | Src1 stationary dword 0 23 15 23 15 7 7 0 0 Tmp1 sliding dword Src1 stationary dword 0 _ abs _ abs _ abs + 0 | ||||||||||||||||||||||||||||||||||||||||||||||
23 15 23 15 7 7 0 0 Tmp1 sliding dword Src1 stationary dword 0 _ abs _ abs _ abs + 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
55 47 | 39 | Tmp1 sliding dword Src1 stationary dword 1 32 31 15 | Tmp1 sliding dword Src1 stationary dword 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||
23 | 15 | 7 | 0 Src1 stationary dword 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||
_ | _ | _ | _ | Src1 stationary dword 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||
Figure 5-8. 64-bit Super Block of SAD Operation in VDBPSADBW
(KL, VL) = (8, 128), (16, 256), (32, 512)
Selection of quadruplets:
FOR I = 0 to VL step 128
TMP1[I+31:I] ← select (SRC2[I+127: I], imm8[1:0])
TMP1[I+63: I+32] ← select (SRC2[I+127: I], imm8[3:2])
TMP1[I+95: I+64] ← select (SRC2[I+127: I], imm8[5:4])
TMP1[I+127: I+96]← select (SRC2[I+127: I], imm8[7:6])
END FOR
SAD of quadruplets:
FOR I =0 to VL step 64
TMP_DEST[I+15:I] ← ABS(SRC1[I+7: I] - TMP1[I+7: I]) +
ABS(SRC1[I+15: I+8]- TMP1[I+15: I+8]) +
ABS(SRC1[I+23: I+16]- TMP1[I+23: I+16]) +
ABS(SRC1[I+31: I+24]- TMP1[I+31: I+24])
TMP_DEST[I+31: I+16] ←ABS(SRC1[I+7: I] - TMP1[I+15: I+8]) +
ABS(SRC1[I+15: I+8]- TMP1[I+23: I+16]) +
ABS(SRC1[I+23: I+16]- TMP1[I+31: I+24]) +
ABS(SRC1[I+31: I+24]- TMP1[I+39: I+32])
TMP_DEST[I+47: I+32] ←ABS(SRC1[I+39: I+32] - TMP1[I+23: I+16]) +
ABS(SRC1[I+47: I+40]- TMP1[I+31: I+24]) +
ABS(SRC1[I+55: I+48]- TMP1[I+39: I+32]) +
ABS(SRC1[I+63: I+56]- TMP1[I+47: I+40])
TMP_DEST[I+63: I+48] ←ABS(SRC1[I+39: I+32] - TMP1[I+31: I+24]) +
ABS(SRC1[I+47: I+40] - TMP1[I+39: I+32]) +
ABS(SRC1[I+55: I+48] - TMP1[I+47: I+40]) +
ABS(SRC1[I+63: I+56] - TMP1[I+55: I+48])
ENDFOR
FOR j ← 0 TO KL-1
i ← j * 16
IF k1[j] OR *no writemask*
THEN DEST[i+15:i] ← TMP_DEST[i+15:i]
ELSE
IF *merging-masking*
; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE
; zeroing-masking
DEST[i+15:i] ← 0
FI
FI;
ENDFOR
DEST[MAXVL-1:VL] ← 0
VDBPSADBW __m512i _mm512_dbsad_epu8(__m512i a, __m512i b);
VDBPSADBW __m512i _mm512_mask_dbsad_epu8(__m512i s, __mmask32 m, __m512i a, __m512i b);
VDBPSADBW __m512i _mm512_maskz_dbsad_epu8(__mmask32 m, __m512i a, __m512i b);
VDBPSADBW __m256i _mm256_dbsad_epu8(__m256i a, __m256i b);
VDBPSADBW __m256i _mm256_mask_dbsad_epu8(__m256i s, __mmask16 m, __m256i a, __m256i b);
VDBPSADBW __m256i _mm256_maskz_dbsad_epu8(__mmask16 m, __m256i a, __m256i b);
VDBPSADBW __m128i _mm_dbsad_epu8(__m128i a, __m128i b);
VDBPSADBW __m128i _mm_mask_dbsad_epu8(__m128i s, __mmask8 m, __m128i a, __m128i b);
VDBPSADBW __m128i _mm_maskz_dbsad_epu8(__mmask8 m, __m128i a, __m128i b);
None
See Exceptions Type E4NF.nb.
Source: Intel® Architecture Software Developer's Manual (May 2018)
Generated: 5-6-2018