-
Notifications
You must be signed in to change notification settings - Fork 97
UNPCKLPS
UNPCKLPS — Unpack and Interleave Low Packed Single-Precision Floating-Point Values
Opcode/ Instruction | Op / En | 64/32 bit Mode Support | CPUID Feature Flag | Description |
NP 0F 14 /r UNPCKLPS xmm1, xmm2/m128 | A | V/V | SSE | Unpacks and Interleaves single-precision floating-point values from low quadwords of xmm1 and xmm2/m128. |
VEX.NDS.128.0F.WIG 14 /r VUNPCKLPS xmm1,xmm2, xmm3/m128 | B | V/V | AVX | Unpacks and Interleaves single-precision floating-point values from low quadwords of xmm2 and xmm3/m128. |
VEX.NDS.256.0F.WIG 14 /r VUNPCKLPS ymm1,ymm2,ymm3/m256 | B | V/V | AVX | Unpacks and Interleaves single-precision floating-point values from low quadwords of ymm2 and ymm3/m256. |
EVEX.NDS.128.0F.W0 14 /r VUNPCKLPS xmm1 {k1}{z}, xmm2, xmm3/m128/m32bcst | C | V/V | AVX512VL AVX512F | Unpacks and Interleaves single-precision floating-point values from low quadwords of xmm2 and xmm3/mem and write result to xmm1 subject to write mask k1. |
EVEX.NDS.256.0F.W0 14 /r VUNPCKLPS ymm1 {k1}{z}, ymm2, ymm3/m256/m32bcst | C | V/V | AVX512VL AVX512F | Unpacks and Interleaves single-precision floating-point values from low quadwords of ymm2 and ymm3/mem and write result to ymm1 subject to write mask k1. |
EVEX.NDS.512.0F.W0 14 /r VUNPCKLPS zmm1 {k1}{z}, zmm2, zmm3/m512/m32bcst | C | V/V | AVX512F | Unpacks and Interleaves single-precision floating-point values from low quadwords of zmm2 and zmm3/m512/m32bcst and write result to zmm1 subject to write mask k1. |
Op/En | Tuple Type | Operand 1 | Operand 2 | Operand 3 | Operand 4 |
A | NA | ModRM:reg (r, w) | ModRM:r/m (r) | NA | NA |
B | NA | ModRM:reg (w) | VEX.vvvv (r) | ModRM:r/m (r) | NA |
C | Full | ModRM:reg (w) | EVEX.vvvv (r) | ModRM:r/m (r) | NA |
Performs an interleaved unpack of the low single-precision floating-point values from the first source operand and the second source operand.
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The destination is not distinct from the first source XMM register and the upper bits (MAXVL-1:128) of the corresponding ZMM register destination are unmodified. When unpacking from a memory operand, an implementation may fetch only the appropriate 64 bits; however, alignment to 16-byte boundary and normal segment checking will still be enforced.
VEX.128 encoded version: The first source operand is a XMM register. The second source operand can be a XMM register or a 128-bit memory location. The destination operand is a XMM register. The upper bits (MAXVL-1:128) of the corresponding ZMM register destination are zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM register or a 256-bit memory location. The destination operand is a YMM register.
SRC1 SRC2 X7 Y7 DEST Y5 X6 Y6 X5 X5 Y5 Y4 X4 Y4 X4 X3 Y3 Y1 X2 Y2 X1 X1 Y1 Y0 X0 Y0 X0 | |||||||||
X7 | X6 | X5 | X4 | X3 | X2 | X1 | X0 | ||
Y7 | Y6 | Y5 | Y4 | Y3 | Y2 | Y1 | Y0 | ||
Y5 | X5 | Y4 | X4 | Y1 | X1 | Y0 | X0 | ||
Figure 4-28. VUNPCKLPS Operation
EVEX.512 encoded version: The first source operand is a ZMM register. The second source operand is a ZMM register, a 512-bit memory location, or a 512-bit vector broadcasted from a 32-bit memory location. The destination operand is a ZMM register, conditionally updated using writemask k1.
EVEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register, a 256-bit memory location, or a 256-bit vector broadcasted from a 32-bit memory location. The destination operand is a YMM register, conditionally updated using writemask k1.
EVEX.128 encoded version: The first source operand is an XMM register. The second source operand is a XMM register, a 128-bit memory location, or a 128-bit vector broadcasted from a 32-bit memory location. The destination operand is a XMM register, conditionally updated using writemask k1.
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF VL >= 128
TMP_DEST[31:0] ← SRC1[31:0]
TMP_DEST[63:32] ← SRC2[31:0]
TMP_DEST[95:64] ← SRC1[63:32]
TMP_DEST[127:96] ← SRC2[63:32]
FI;
IF VL >= 256
TMP_DEST[159:128] ← SRC1[159:128]
TMP_DEST[191:160] ← SRC2[159:128]
TMP_DEST[223:192] ← SRC1[191:160]
TMP_DEST[255:224] ← SRC2[191:160]
FI;
IF VL >= 512
TMP_DEST[287:256] ← SRC1[287:256]
TMP_DEST[319:288] ← SRC2[287:256]
TMP_DEST[351:320] ← SRC1[319:288]
TMP_DEST[383:352] ← SRC2[319:288]
TMP_DEST[415:384] ← SRC1[415:384]
TMP_DEST[447:416] ← SRC2[415:384]
TMP_DEST[479:448] ← SRC1[447:416]
TMP_DEST[511:480] ← SRC2[447:416]
FI;
FOR j ← 0 TO KL-1
i ← j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] ← TMP_DEST[i+31:i]
ELSE
IF *merging-masking*
; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking*
; zeroing-masking
DEST[i+31:i] ← 0
FI
FI;
ENDFOR
DEST[MAXVL-1:VL] ← 0
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j ← 0 TO KL-1
i ← j * 31
IF (EVEX.b = 1)
THEN TMP_SRC2[i+31:i] ← SRC2[31:0]
ELSE TMP_SRC2[i+31:i] ← SRC2[i+31:i]
FI;
ENDFOR;
IF VL >= 128
TMP_DEST[31:0] ← SRC1[31:0]
TMP_DEST[63:32] ← TMP_SRC2[31:0]
TMP_DEST[95:64] ← SRC1[63:32]
TMP_DEST[127:96] ← TMP_SRC2[63:32]
FI;
IF VL >= 256
TMP_DEST[159:128] ← SRC1[159:128]
TMP_DEST[191:160] ← TMP_SRC2[159:128]
TMP_DEST[223:192] ← SRC1[191:160]
TMP_DEST[255:224] ← TMP_SRC2[191:160]
FI;
IF VL >= 512
TMP_DEST[287:256] ← SRC1[287:256]
TMP_DEST[319:288] ← TMP_SRC2[287:256]
TMP_DEST[351:320] ← SRC1[319:288]
TMP_DEST[383:352] ← TMP_SRC2[319:288]
TMP_DEST[415:384] ← SRC1[415:384]
TMP_DEST[447:416] ← TMP_SRC2[415:384]
TMP_DEST[479:448] ← SRC1[447:416]
TMP_DEST[511:480] ← TMP_SRC2[447:416]
FI;
FOR j ← 0 TO KL-1
i ← j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] ← TMP_DEST[i+31:i]
ELSE
IF *merging-masking*
; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking*
; zeroing-masking
DEST[i+31:i] ← 0
FI
FI;
ENDFOR
DEST[MAXVL-1:VL] ← 0
DEST[31:0] ←SRC1[31:0]
DEST[63:32] ←SRC2[31:0]
DEST[95:64] ←SRC1[63:32]
DEST[127:96] ←SRC2[63:32]
DEST[159:128] ←SRC1[159:128]
DEST[191:160] ←SRC2[159:128]
DEST[223:192] ←SRC1[191:160]
DEST[255:224] ←SRC2[191:160]
DEST[MAXVL-1:256] ← 0
DEST[31:0] ←SRC1[31:0]
DEST[63:32] ←SRC2[31:0]
DEST[95:64] ←SRC1[63:32]
DEST[127:96] ←SRC2[63:32]
DEST[MAXVL-1:128] ←0
DEST[31:0] ←SRC1[31:0]
DEST[63:32] ←SRC2[31:0]
DEST[95:64] ←SRC1[63:32]
DEST[127:96] ←SRC2[63:32]
DEST[MAXVL-1:128] (Unmodified)
VUNPCKLPS __m512 _mm512_unpacklo_ps(__m512 a, __m512 b);
VUNPCKLPS __m512 _mm512_mask_unpacklo_ps(__m512 s, __mmask16 k, __m512 a, __m512 b);
VUNPCKLPS __m512 _mm512_maskz_unpacklo_ps(__mmask16 k, __m512 a, __m512 b);
VUNPCKLPS __m256 _mm256_unpacklo_ps (__m256 a, __m256 b);
VUNPCKLPS __m256 _mm256_mask_unpacklo_ps(__m256 s, __mmask8 k, __m256 a, __m256 b);
VUNPCKLPS __m256 _mm256_maskz_unpacklo_ps(__mmask8 k, __m256 a, __m256 b);
UNPCKLPS __m128 _mm_unpacklo_ps (__m128 a, __m128 b);
VUNPCKLPS __m128 _mm_mask_unpacklo_ps(__m128 s, __mmask8 k, __m128 a, __m128 b);
VUNPCKLPS __m128 _mm_maskz_unpacklo_ps(__mmask8 k, __m128 a, __m128 b);
None
Non-EVEX-encoded instructions, see Exceptions Type 4. EVEX-encoded instructions, see Exceptions Type E4NF.
Source: Intel® Architecture Software Developer's Manual (May 2018)
Generated: 5-6-2018