Skip to content
Henk-Jan Lebbink edited this page Jun 5, 2018 · 14 revisions

MOVAPS — Move Aligned Packed Single-Precision Floating-Point Values

Opcode/ Instruction Op/En 64/32 bit Mode Support CPUID Feature Flag Description
NP 0F 28 /r MOVAPS xmm1, xmm2/m128 A V/V SSE Move aligned packed single-precision floating-point values from xmm2/mem to xmm1.
NP 0F 29 /r MOVAPS xmm2/m128, xmm1 B V/V SSE Move aligned packed single-precision floating-point values from xmm1 to xmm2/mem.
VEX.128.0F.WIG 28 /r VMOVAPS xmm1, xmm2/m128 A V/V AVX Move aligned packed single-precision floating-point values from xmm2/mem to xmm1.
VEX.128.0F.WIG 29 /r VMOVAPS xmm2/m128, xmm1 B V/V AVX Move aligned packed single-precision floating-point values from xmm1 to xmm2/mem.
VEX.256.0F.WIG 28 /r VMOVAPS ymm1, ymm2/m256 A V/V AVX Move aligned packed single-precision floating-point values from ymm2/mem to ymm1.
VEX.256.0F.WIG 29 /r VMOVAPS ymm2/m256, ymm1 B V/V AVX Move aligned packed single-precision floating-point values from ymm1 to ymm2/mem.
EVEX.128.0F.W0 28 /r VMOVAPS xmm1 {k1}{z}, xmm2/m128 C V/V AVX512VL AVX512F Move aligned packed single-precision floating-point values from xmm2/m128 to xmm1 using writemask k1.
EVEX.256.0F.W0 28 /r VMOVAPS ymm1 {k1}{z}, ymm2/m256 C V/V AVX512VL AVX512F Move aligned packed single-precision floating-point values from ymm2/m256 to ymm1 using writemask k1.
EVEX.512.0F.W0 28 /r VMOVAPS zmm1 {k1}{z}, zmm2/m512 C V/V AVX512F Move aligned packed single-precision floating-point values from zmm2/m512 to zmm1 using writemask k1.
EVEX.128.0F.W0 29 /r VMOVAPS xmm2/m128 {k1}{z}, xmm1 D V/V AVX512VL AVX512F Move aligned packed single-precision floating-point values from xmm1 to xmm2/m128 using writemask k1.
EVEX.256.0F.W0 29 /r VMOVAPS ymm2/m256 {k1}{z}, ymm1 D V/V AVX512VL AVX512F Move aligned packed single-precision floating-point values from ymm1 to ymm2/m256 using writemask k1.
EVEX.512.0F.W0 29 /r VMOVAPS zmm2/m512 {k1}{z}, zmm1 D V/V AVX512F Move aligned packed single-precision floating-point values from zmm1 to zmm2/m512 using writemask k1.

Instruction Operand Encoding

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4
A NA ModRM:reg (w) ModRM:r/m (r) NA NA
B NA ModRM:r/m (w) ModRM:reg (r) NA NA
C Full Mem ModRM:reg (w) ModRM:r/m (r) NA NA
D Full Mem ModRM:r/m (w) ModRM:reg (r) NA NA

Description

Moves 4, 8 or 16 single-precision floating-point values from the source operand (second operand) to the destination operand (first operand). This instruction can be used to load an XMM, YMM or ZMM register from an 128-bit, 256-bit or 512-bit memory location, to store the contents of an XMM, YMM or ZMM register into a 128-bit, 256-bit or 512-bit memory location, or to move data between two XMM, two YMM or two ZMM registers.

When the source or destination operand is a memory operand, the operand must be aligned on a 16-byte (128-bit version), 32-byte (VEX.256 encoded version) or 64-byte (EVEX.512 encoded version) boundary or a general- protection exception (#GP) will be generated. For EVEX.512 encoded versions, the operand must be aligned to the size of the memory operand. To move single-precision floating-point values to and from unaligned memory locations , use the VMOVUPS instruction. Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instructions will #UD.

EVEX.512 encoded version:

Moves 512 bits of packed single-precision floating-point values from the source operand (second operand) to the destination operand (first operand). This instruction can be used to load a ZMM register from a 512-bit float32 memory location, to store the contents of a ZMM register into a float32 memory location, or to move data between two ZMM registers. When the source or destination operand is a memory operand, the operand must be aligned on a 64-byte boundary or a general-protection exception (#GP) will be generated. To move single-precision floating- point values to and from unaligned memory locations, use the VMOVUPS instruction.

VEX.256 and EVEX.256 encoded version:

Moves 256 bits of packed single-precision floating-point values from the source operand (second operand) to the destination operand (first operand). This instruction can be used to load a YMM register from a 256-bit memory location, to store the contents of a YMM register into a 256-bit memory location, or to move data between two YMM registers. When the source or destination operand is a memory operand, the operand must be aligned on a 32-byte boundary or a general-protection exception (#GP) will be generated.

128-bit versions:

Moves 128 bits of packed single-precision floating-point values from the source operand (second operand) to the destination operand (first operand). This instruction can be used to load an XMM register from a 128-bit memory location, to store the contents of an XMM register into a 128-bit memory location, or to move data between two XMM registers. When the source or destination operand is a memory operand, the operand must be aligned on a 16-byte boundary or a general-protection exception (#GP) will be generated. To move single-precision floating- point values to and from unaligned memory locations, use the VMOVUPS instruction.

128-bit Legacy SSE version: Bits (MAXVL-1:128) of the corresponding ZMM destination register remain unchanged.

(E)VEX.128 encoded version: Bits (MAXVL-1:128) of the destination ZMM register are zeroed.

Operation

VMOVAPS (EVEX encoded versions, register-copy form)

(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j0 TO KL-1
    ij * 32
    IF k1[j] OR *no writemask*
        THEN DEST[i+31:i] ← SRC[i+31:i]
        ELSE 
            IF *merging-masking*
                            ; merging-masking
                THEN *DEST[i+31:i] remains unchanged*
                ELSE  DEST[i+31:i] ← 0 
                            ; zeroing-masking
            FI
    FI;
ENDFOR
DEST[MAXVL-1:VL] ← 0

VMOVAPS (EVEX encoded versions, store-form)

(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j0 TO KL-1
    ij * 32
    IF k1[j] OR *no writemask*
        THEN DEST[i+31:i]← 
            SRC[i+31:i]
        ELSE *DEST[i+31:i] remains unchanged*
                            ; merging-masking
    FI;
ENDFOR;

VMOVAPS (EVEX encoded versions, load-form)

(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j0 TO KL-1
    ij * 32
    IF k1[j] OR *no writemask*
        THEN DEST[i+31:i] ← SRC[i+31:i]
        ELSE 
            IF *merging-masking*
                            ; merging-masking
                THEN *DEST[i+31:i] remains unchanged*
                ELSE  DEST[i+31:i] ← 0 
                            ; zeroing-masking
            FI
    FI;
ENDFOR
DEST[MAXVL-1:VL] ← 0

VMOVAPS (VEX.256 encoded version, load - and register copy)

DEST[255:0] ← SRC[255:0]
DEST[MAXVL-1:256] ← 0

VMOVAPS (VEX.256 encoded version, store-form)

DEST[255:0] ← SRC[255:0]

VMOVAPS (VEX.128 encoded version, load - and register copy)

DEST[127:0] ← SRC[127:0]
DEST[MAXVL-1:128] ← 0

MOVAPS (128-bit load- and register-copy- form Legacy SSE version)

DEST[127:0] ← SRC[127:0]
DEST[MAXVL-1:128] (Unmodified)

(V)MOVAPS (128-bit store-form version)

DEST[127:0] ← SRC[127:0]

Intel C/C++ Compiler Intrinsic Equivalent

VMOVAPS __m512 _mm512_load_ps( void * m);
VMOVAPS __m512 _mm512_mask_load_ps(__m512 s, __mmask16 k, void * m);
VMOVAPS __m512 _mm512_maskz_load_ps( __mmask16 k, void * m);
VMOVAPS void _mm512_store_ps( void * d, __m512 a);
VMOVAPS void _mm512_mask_store_ps( void * d, __mmask16 k, __m512 a);
VMOVAPS __m256 _mm256_mask_load_ps(__m256 a, __mmask8 k, void * s);
VMOVAPS __m256 _mm256_maskz_load_ps( __mmask8 k, void * s);
VMOVAPS void _mm256_mask_store_ps( void * d, __mmask8 k, __m256 a);
VMOVAPS __m128 _mm_mask_load_ps(__m128 a, __mmask8 k, void * s);
VMOVAPS __m128 _mm_maskz_load_ps( __mmask8 k, void * s);
VMOVAPS void _mm_mask_store_ps( void * d, __mmask8 k, __m128 a);
MOVAPS __m256 _mm256_load_ps (float * p);
MOVAPS void _mm256_store_ps(float * p, __m256 a);
MOVAPS __m128 _mm_load_ps (float * p);
MOVAPS void _mm_store_ps(float * p, __m128 a);

SIMD Floating-Point Exceptions

None

Other Exceptions

Non-EVEX-encoded instruction, see Exceptions Type1.SSE; additionally

#UD If VEX.vvvv != 1111B. EVEX-encoded instruction, see Exceptions Type E1.


Source: Intel® Architecture Software Developer's Manual (May 2018)
Generated: 5-6-2018

Clone this wiki locally