-
Notifications
You must be signed in to change notification settings - Fork 98
SHA256RNDS2
Henk-Jan Lebbink edited this page Jun 5, 2018
·
12 revisions
SHA256RNDS2 — Perform Two Rounds of SHA256 Operation
Opcode/ Instruction | Op/En | 64/32 bit Mode Support | CPUID Feature Flag | Description |
NP 0F 38 CB /r SHA256RNDS2 xmm1, xmm2/m128, | RM0 | V/V | SHA | Perform 2 rounds of SHA256 operation using an initial SHA256 state (C,D,G,H) from xmm1, an initial SHA256 state (A,B,E,F) from xmm2/m128, and a pre-computed sum of the next 2 round mes- sage dwords and the corresponding round constants from the implicit operand XMM0, storing the updated SHA256 state (A,B,E,F) result in xmm1. |
Op/En | Operand 1 | Operand 2 | Operand 3 |
RMI | ModRM:reg (r, w) | ModRM:r/m (r) | Implicit XMM0 (r) |
The SHA256RNDS2 instruction performs 2 rounds of SHA256 operation using an initial SHA256 state (C,D,G,H) from the first operand, an initial SHA256 state (A,B,E,F) from the second operand, and a pre-computed sum of the next 2 round message dwords and the corresponding round constants from the implicit operand xmm0. Note that only the two lower dwords of XMM0 are used by the instruction.
The updated SHA256 state (A,B,E,F) is written to the first operand, and the second operand can be used as the updated state (C,D,G,H) in later rounds.
A_0 ← SRC2[127:96];
B_0 ← SRC2[95:64];
C_0 ← SRC1[127:96];
D_0 ← SRC1[95:64];
E_0 ← SRC2[63:32];
F_0 ← SRC2[31:0];
G_0 ← SRC1[63:32];
H_0 ← SRC1[31:0];
WK0 ← XMM0[31: 0];
WK1 ← XMM0[63: 32];
FOR i = 0 to 1
A_(i +1) ← Ch (E_i, F_i, G_i) +Σ1( E_i) +WKi+ H_i + Maj(A_i , B_i, C_i) +Σ0( A_i);
B_(i +1) ← A_i;
C_(i +1) ← B_i ;
D_(i +1) ← C_i;
E_(i +1) ← Ch (E_i, F_i, G_i) +Σ1( E_i) +WKi+ H_i + D_i;
F_(i +1) ← E_i ;
G_(i +1) ← F_i;
H_(i +1) ← G_i;
ENDFOR
DEST[127:96] ← A_2;
DEST[95:64] ← B_2;
DEST[63:32] ← E_2;
DEST[31:0] ← F_2;
SHA256RNDS2: __m128i _mm_sha256rnds2_epu32(__m128i, __m128i, __m128i);
None
None
See Exceptions Type 4.
Source: Intel® Architecture Software Developer's Manual (May 2018)
Generated: 5-6-2018